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Introduction:  Impact craters are one of the most 
predominant geological features on the Moon. Cra-
ters provide windows into a planet’s geology, and 
their morphologies provide important information 
into the properties of the body that was impacted, 
and processes that have occurred since the crater 
formed. While previous lunar crater classification 
has been done by hand, it can be time consuming 
given the sheer number of craters that are on the 
Moon. We propose the use of unsupervised ma-
chine learning techniques for a more systematic 
approach to crater characterization. Unsupervised 
machine learning techniques deal with finding pat-
terns in unlabeled data. One of their main purposes 
is to achieve a form of dimensionality reduction, 
that is, condensing data into less features while still 
retaining its most important aspects. Using the py-
thon deep learning packages Keras and Tensor-
flow, we construct an autoencoder to categorize the 
morphology of simple craters and explore the nat-
ural clustering that results when crater images are 
put through the autoencoder. 
 
Methods:   We created a trial data set composed of 
46 images of craters, obtained by the Lunar Recon-
naissance Orbiter Camera Wide Angle Camera 
(LROC WAC). To mitigate biases related to illu-
mination, we crop images from the WAC global 
mosaic, which employs data obtained over multi-
ple orbits to even out differences in solar incidence 
angle. Our code uses coordinates and diameters of 
craters manually identified on the Moon [1], re-
projects the mosaic in cylindrical coordinates cen-
tered around the crater center, and crops a square 
region around the crater with sides equal to 1.25 
crater radii. Figure 1 shows the locations of craters 
that were used for this initial preliminary study. 
Once the crater images are extracted, the images 
were resized to be the same number of pixels (95 × 
95). A sample of these images for four different 
craters can be seen in Figure 2. The images are then 
put through an autoencoder neural network where 
they are first encoded, or compressed, into a set of 
features which is called the ‘bottleneck’ layer or 
vector. This layer is subsequently used to decode, 
or reconstruct, the original input. Following this 

step, we plot the locations of each crater within the 
outputted latent space of the bottleneck layer of the 
autoencoder. This bottleneck layer is able to iden-
tify the aspects of most variance in each image, 
therefore theoretically plotting images with similar 
features close to one another.   
For the second trial, which is currently ongoing but 
we plan to present the results of at the conference, 
we are compiling small mosaics of LROC Narrow 
Angle Camera (NAC) images for 100 craters. 50 
of these craters are cold spot craters, which are 
younger, smaller, and thermophysically distinct 
[2], and the other 50 are non-cold spot craters of 

Figure 1. Locations of crater images (green dots) 
used for trial 1 over LROC Mosaic. 

Figure 2. Examples of resized images extracted with 
MATLAB script to be put through the autoencoder. 
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similar size (<5 km diameter). Similarly, these will 
be put through the autoencoder to evaluate the via-
bility of using an autoencoder for automated detec-
tion of morphologies that distinguish cold spot cra-
ters from older, and non-cold spot, craters.  

 
Results: The result of the first trial is shown in Fig-
ure 3. In this first trial, we have identified approx-
imately four distinct clusters, each one having its 
own set of characteristic properties. Figure 4 shows 
a crater image example from each cluster. We find 
that all craters in the red cluster are well-defined 
and mostly circular. Outlying craters (indexed 22 
and 16) that fell in the parameter space in between 
our four clusters also have similar features to this 
red cluster. The blue cluster contains degraded cra-
ters with smaller craters imposed on their interiors. 
Interestingly, craters of index 11, 21, and 4 (Figure 
5) all had breached crater rims, and we find that 
most craters within the blue cluster lie on the edges 
of lunar maria. We find that craters within the yel-
low cluster are degraded and irregularly shaped; in 
many of these crater images, other noticeable mor-
phological features such as a double rims, open 
rims, and imposed craters are also present, there-
fore also demonstrating their detectability by the 
autoencoder. The green cluster was most similar to 
the red cluster, with the main difference being the 
craters are more irregularly shaped. In respect to 
crater radius, we find no correlation. 

           

           

            

                       

Future Work: Trial two is underway, where we 
will be able to compare cold spot crater images 
with non-cold spot images from LROC-NAC. The 
autoencoder technique is much more time-efficient 
than manually identifying classes and morpholog-
ical properties of craters. Future modifications of 
the autoencoder will address characterizing other 
physical variables while adjusting hyperparame-
ters and will also incorporate other data sets to 
identify variance in properties, such as rock abun-
dance, radar properties, and thermal differences.  
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Figure 3. Decoded data plot from trial 1 (N=46). 
Each point corresponds to an image and numbering 
relates to index of each image as it was put through 
the autoencoder and color to crater radius. Hexa-
gons were drawn after for clustering visualization, 
and we suggest four major clusters (labeled as red, 
blue, orange and green hexagons). 

Principal axis 2 

Figure 5. Degraded, breached rim craters (index 
11, 21, and 4 respectively) from the blue cluster.  

Figure 4. Craters of index 37 (A), 0 (B), 36 (C), 
41 (D) each correspond to a different cluster indi-
cated by the color of the label.   
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