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Introduction: Spectroscopy has been widely 

used to study the composition of planetary and 

interstellar bodies [1,2]. Spectroscopic techniques have 

helped us identify resources such as water [3,4] on the 

lunar surface as well. As we enter the Artemis era of 

lunar exploration, the data volume returned to the 

scientific community will be increasing multifold. As 

we gear towards the scientific exploration and in-situ 

resource identification on extra-terrestrial bodies, 

including the Moon, advanced methods for data 

archiving, processing, and analysis will be required. 

Here we have used a machine learning algorithm to 

estimate the Christiansen feature (CF) position from 

Channel 3, 4 and 5 (corresponding to 7.55 μm - 8.05 μm, 

8.10 μm – 8.40 μm, and 8.38 μm - 8.68 μm, 

respectively) of the Diviner Lunar Radiometer 

Experiment [5]. The CF is an emissivity maximum or 

reflectance minimum that occurs where the real index of 

refraction passes unity and the imaginary index 

(extinction coefficient) approaches zero [6]. The 

position of the CF is indicative of silicate 

polymerization in a mineral and occurs at a shorter 

wavelength for silica-rich framework and chained-

silicates and at longer wavelengths for silica poor 

minerals.  

Background: The three mineralogy channels 

of Diviner have been used to understand the bulk silicate 

composition of the Moon in detail over the last decade. 

The calculated emissivities of these three bands are 

typically corrected for photometric effects, sun distance 

and solar incidence angle [7]. To calculate the CF 

position, the maximum of a three-point parabolic fit to 

the brightness temperatures or emissivities from these 

three channels is used. However, for highly silicic and 

ultramafic minerals, there is an ad-hoc cut-off at 6.9 μm 

and 9.6 μm, where the CF occurs well outside the 

wavelengths measured by Diviner. The parabolic fit 

method has proven to work well for regolith 

compositions with CF positions near 8 μm, but, as we 

move toward high or low-silica compositions 

dominated by minerals such as quartz or ilmenite/spinel, 

respectively, the difference between the estimated and 

real CF positions can be substantial. In this work, we 

have developed a machine learning algorithm to 

calculate CF directly from Diviner’s 3 mineralogy 

spectral bands. The algorithm trains over a spectral 

library of different lunar mineral mixtures convolved to 

the band passes of different missions.  

Dataset and Methods: The spectral library 

used in this study was collected in simulated lunar 

environment chambers at Stony Brook University [8] 

for different grain sizes of pure minerals and the 

Applied Physics Laboratory [9] for a variety of mineral 

mixtures, temperatures, and time. We have used a total 

of 539 spectra convolved to the three channels of 

Diviner. The CF of each full laboratory spectrum was 

estimated individually using a six-degree polynomial 

fit.  

 
Figure 1. Flowchart of the machine learning model used to 

estimate CF wavelength position.  

We have used a Support Vector Regression 

(SVR) algorithm trained over 70% of the spectra and 

then validated on the remaining 30% of the spectra. The 

pipeline uses cross-validated testing for optimization. 

SVR is a linear regression method that uses a 

hyperplane for fitting the data. The trained model is then 

deployed on the Diviner emissivity data for CF 

estimation (Figure 1).  We also applied this algorithm 

on published bandpasses for the L-CIRiS [10], L-VISE 

[11] and Lunar Trailblazer thermal mapper [12] 

instruments to judge its performance and prepare for 

analyses of future datasets. We also performed the same 

for chained silicates via a cutoff for CF below 7.8 μm. 

Results: The r2 score of the validation set is 

0.91 with an error in 0.14 m in the predicted 

measurements. We further deployed this model on the 

Apollo 16 site for ground truth verification. We initially 

deployed the model on the standard emissivity value for 
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CF prediction for three different time-of-day ranges. 

The standard emissivity values without time-of-day 

correction display that the calculated composition varies 

from anorthositic to basaltic in line with previous 

studies [13] (Figure 3a). 

 
Figure 2. True versus predicted CF for a) Diviner b) L -CIRiS 

c) Lunar Trailblazer and d) Lunar VISE 

 
Figure 3. a) CF estimated using standard emissivity at 

different time of day for same pixels. b) CF estimated using 

ML model for corrected emissivity at different time of day.  

 

We then also applied the ML model on the corrected CF 

values. The corrected CF values estimated through the 

ML model have a wider distribution with more 

distinguishable values compared to the parabolic model 

fit, which is concentrated around 8.15 μm. Some 

difference between the models also occurs as we move 

away from 8 μm in either direction, and the difference 

between the true and estimated CF increases due to the 

nature of parabolic fit. Furthermore, with the time-of-

day correction, we observe that there is an overall shift 

in the CF values towards shorter wavelengths with 

narrower distribution of the values (Figure 3b). We also 

observe that after the correction, the estimated CF 

values overlap indicating the model predicts similar 

results as the previous parabolic model. Our corrected 

CF predictions are also in agreement with previously 

estimated values of Apollo 16 samples through lab 

spectroscopy by [13].  

Future Missions: The trained model displays 

the lowest root mean squared error value (Figure 4a) and 

r-squared value (Figure 4b) for Lunar Trailblazer bands 

followed by the Diviner, L-CIRiS and L-VISE bands 

respectively. This is expected since Lunar Trailblazer 

has ten bands as opposed to only three bands for the rest 

of the instruments.  

 
Figure 4. Model performance for each dataset using root 

mean squared error(a) and r-squared (b) using predicted and 

true CF values. 

Future Work: In future, we plan to add 

ilmenite and basalt mixtures to the model so that it can 

be reliably deployed on the mare basalts.  
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