
Creating Microscopic Digital Elevation Models of Planetary Regolith Using Monocular Images and 

Convolutional Neural Networks.  F. Diotte1, M. Lemelin1 and E. A. Cloutis2, 1Département de géomatique 

appliquée, Université de Sherbrooke, QC, Canada J1K 2R1 (Frederic.Diotte@usherbrooke.ca), 2Department of 

Geography, University of Winnipeg, MB, Canada R3B 2E9. 

 

 

Introduction: The accurate estimation of the 

surface properties of regoliths is essential for 

understanding the structure and texture of a planet's 

surface. Soil properties such as grain size, roughness, 

and porosity can provide insights into the processes that 

have shaped a planet's surface over time. For example, 

remotely sensed images of lunar swirls and permanently 

shadowed regions suggest that these regions have 

geotechnical properties that differ from those of 

surrounding soils. High forward scattering of lunar 

swirls is consistent with lower millimeter scale 

roughness [1], while space weathering trends in lunar 

swirls may indicate a higher content of fine-grained 

feldspathic material [2]. In permanently shadowed 

regions, low far-UV albedo suggests a higher porosity 

compared to sunlit soils [3]. 

To verify these hypotheses, in situ data such as high 

spatial resolution camera images are needed. Future 

missions such as Lunar Vertex, VIPER, and the 

Canadian lunar rover include multispectral 

microscopes. These instruments will provide images 

that can be used to generate digital elevation models 

(DEMs), which in turn can be used to calculate the 

microscopic topographic roughness.  

Although stereophotogrammetry is a robust 

approach, it cannot be applied to monocular images, and 

the quality of its results is highly dependent on the 

baseline distance of the stereo pair. Deep learning 

approaches for mineralogy, texture, grain size, porosity, 

and microtopography estimation (which we term 

“depth” here), on the other hand, now offer robust, 

accurate, and rapidly improving performance. 

In this study, we propose using deep learning 

techniques to estimate depth from monocular images of 

Martian soil acquired by the Microscopic Imager (MI) 

instrument, in preparation for upcoming lunar data. Our 

approach leverages the rich information contained in 

these images, including texture, color, and shape, to 

estimate the distance of each pixel to the camera. We 

demonstrate the ability of our approach to consistently 

predict depth for submillimeter scale soils, although 

fine-tuning of the model will be required for acceptable 

accuracy. 

Dataset: We used a dataset of stereo pairs of images 

and corresponding DEMs produced by [4] of 1359 

Martian targets acquired using the Microscopic Imager 

on the Spirit and Opportunity missions. The input 

images are 8-bit focal section merges with a pixel size 

of 35 μm. The DEMs also have a radiometric resolution 

of 8 bits, a horizontal resolution of 460 μm, and a depth 

repeatability of approximately 600 μm [4]. To create a 

larger dataset, we divided each image into nine 224 x 

224 pixel tiles, resulting in a total of 12,168 images. The 

data was then divided into training, validation, and 

testing sets in an 80/20/20% proportion. To increase the 

diversity of the dataset, we applied data augmentation 

techniques such as flipping, adjusting contrast, hue, 

saturation, and brightness. The inputs were standardized 

using the mean and standard deviation of the training 

set. The target values were normalized between 0 and 1.  

Figure 1 provides an overview of the MI dataset. The 

targets have variable textures, from fine dust to 

consolidated surfaces. Illumination conditions vary 

greatly, and some surfaces are entirely covered by 

shadow. The focusing is not optimal at all pixels, with 

some blurred regions in the images. Albedo variations 

caused by mineralogy and alterations are also visible. 

 
Figure 1. Images (row 1) and DEMs (row 2) of targets 

B0015piedmont and B0015roberte_1 from the 

Microscopic Imager on the Spirit and Opportunity 

missions. Depth values are normalized between 0 and 1 

and are unitless. 

Model: The architecture of our model is largely 

inspired by that of [5], but we adopt a supervised 

training approach instead of their self-supervised 

approach, using focal merge sections as inputs and 

DEMs as targets. We also use a simple MSE loss 

function and employ a pre-trained Resnet-18 encoder 

with a matching number of upsampling layers, all of 
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which use ELU activation functions and have skip 

connections. The Adam optimizer is used with a base 

learning rate of 1e-4 and a batch size of 8. The weights 

of the network are adjusted by iterating through the 

training dataset over 67 epochs. The validation dataset 

is used to select the optimal version of the model based 

on performance metrics.  

Results: Examples of predictions are shown in 

Figure 2. The model is most successful at understanding 

well defined, contrasting objects with simple shapes, 

such as larger grains scattered on a finer dust. Despite 

the model’s ability to recognize shapes, the absolute 

range of depths is sometimes significantly off, as shown 

by performance metrics described below. The model is 

also sensitive to shadows and will sometimes infer 

higher depth in large regions that are simply obscured 

(see fourth row in Figure 2).  

 
Figure 2. Tiles of focal section merges (input), MNEs 

(target) and predictions for four MI targets. From top to 

bottom: B0015roberte_1, B0046rubel2, 

B2944Amboy_R9, B2485Luis_de_Torres_1.  

It appears that the quality of the DEMs from the MI 

dataset is a significant bottleneck for the model's 

performance. Many DEMs contain square artifacts, and 

depth variations in the images do not always align with 

the objects depicted (third row in Figure 2). The coarse 

horizontal and vertical resolutions of the DEMs also 

affect the model's predictions. As a result, the model is 

unable to predict depth for grains with a diameter of a 

few pixels. 

Evolution of loss with training epochs is shown in 

Figure 3. The model reaches the minimum validation 

loss at 20 epochs, but the validation and training loss 

quickly diverge after a few (< 5) epochs, indicating 

overfitting of the data and poor generalization ability of 

the model. To evaluate the model's performance, we 

calculated the relative absolute error (3,52), the relative 

squared error (2,42), RMSE (0,5117), and δ < 1.25 

threshold accuracy percentage (9,62 %). The errors are 

high, considering the range (0 – 1) of values used. The 

low percentage of the predicted/reference ratio being 

less than 1.25 indicates that only a small fraction of the 

estimated depths is accurate. 

 
Figure 3. Evolution of loss with training epochs. 

Future work: There are two ways in which we 

propose to improve this approach. (1) We will render 

numerically modelled soils with high variance in target, 

illumination, and observation conditions. Numerical 

modelling will greatly increase the size of the dataset 

and should reduce overfitting. It will also help to 

overcome the restriction in spatial resolution imposed 

by stereophotogrammetry. (2) We will add a fractal 

statistics constraint to the loss function. Using Apollo 

Lunar Stereo Camera images, [6] demonstrated that the 

scale dependence of lunar’s surface roughness follows 

fractal statistics at submillimeter to subcentimeter 

scales. We will therefore calculate closeness of the 

model’s predictions to fractal statistics to adjust the loss 

function, with the hope of improving the model’s 

performance when applied to lunar soils. 
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