
A PROCESSING PIPELINE FOR CRISM HYPERSPECTRAL MAPPING DATA. M. S. Phillips1, S. L. 

Murchie1, F. P. Seelos1, K. M. Hancock1, D. C. Stephens1, M. Kawamura1,2. 1Johns Hopkins University Applied 

Physics Laboratory (Michael.Phillips@jhuapl.edu), 2Department of Physics and Astronomy, Dartmouth. 

 

Introduction: Results from both the Compact 

Reconnaissance Imaging Spectrometer for Mars 

(CRISM) and the Observatoire pour la Minéralogie, 

l’Eau, les Glaces et l’Activité (OMEGA) instruments 

have shown that the type and abundance of alteration 

minerals on Mars varies with surface age [1]–[7]. 

Although the general story of secular variation in 

alteration mineralogy has come into focus, detailed 

questions remain about the spatial variation and extent 

of alteration on Mars that cannot be answered with low 

spectral resolution products with near global coverage 

(e.g., CRISM MRDR multispectral map tiles) or high 

spectral resolution products with low spatial coverage 

(e.g., CRISM targeted observations). To fill the gap 

between global multispectral and targeted hyperspectral 

products, we have developed a processing pipeline for 

CRISM 180-m/pixel, 262-channel hyperspectral 

mapping data (HSP) – a dataset that affords better 

spatial coverage compared to targeted observations 

(~39% vs. ~2% global coverage) and increased spectral 

sampling over multispectral mapping data (MSP).  

Background. A data processing pipeline was 

recently completed for MRDR map tiles that are 

currently being delivered to the PDS [8]. The 

development of this pipeline updated our knowledge on 

5 steps required to process HSP data to a state at which 

standard CRISM spectral parameters [9] can be applied 

and the data can be interpreted: (1) radiometric 

calibration correction, (2) remediation of noise using a 

filtering algorithm, (3) normalization of atmospheric 

gas absorptions, (4) photometric correction for solar 

incidence angle, and (5) reconciliation of inter-strip 

differences in calibration and atmospheric opacity. 

Steps (1), (2), and (5) have been developed in this effort 

for HSP-specific processing while steps (3) and (4) are 

standard capabilities of the publicly available CRISM 

Analysis Toolkit [10]. 

Methods: Radiometric Calibration Correction. 

CRISM targeted observations (FRT, HRL, HRS, FRS, 

ATO, ATU) and VNIR-IR mapping data (MSP and 

HSP) are acquired at different frame rates, and there are 

small differences in radiometric calibration with frame 

rate. CRISM's radiometric calibration is based on fully 

hyperspectral data that were acquired at the frame rate 

of targeted observations, and that wavelength-

dependent calibration vector is subset to the 

wavelengths used in any particular observing mode. 

Hence, a correction for the higher frame rate of HSP 

data must be derived to make the hyperspectral 

information in the HSP data comparable to the 

information in targeted observations. To develop the 

correction for frame-rate-dependence of radiometric 

calibration, we used a nadir-pointed observation of 

Tharsis that was collected for flat-field correction of 

targeted observations, averaging many frames along-

track, and ratioed it to an overlapping, similarly 

processed HSP data strip.  

Noise Remediation Filtering. A new noise 

remediation approach for HSP data is a second major 

development in this effort. CRISM data contain two 

types of noise: (i) systematic noise that depends on 

cross-track optical artifacts and calibration residuals at 

specific detector elements, and (ii) for the IR detector, 

stochastic noise due to operation at temperatures 5-15K 

warmer than the design temperature. Corrections for 

systematic noise in HSP data are adapted directly from 

the CRISM processing pipeline.  

For remediation of stochastic noise, we developed a 

variation of the filtering approach applied to MSP data 

[8]. The MSP filtering algorithm rasters a 2D kernel 

over each band of the conditioned image cube, 

calculating outlier values within the kernel and counting 

each instance a pixel is flagged as an outlier. Pixels 

counted as outliers above a threshold value are updated 

through a distance-weighted spatial interpolation. This 

process is iterated until all outlier pixels have been 

updated. The MSP “iterative outlier voting” routine is 

applied individually to each wavelength because small 

band-to-band variations may contain signal. However, 

the continuous spectral sampling of HSP data makes 

valid the assumption of band-to-band correlation. We 

therefore extended the filtering kernel to 3 dimensions 

and applied the same “iterative outlier voting” technique 

to HSP data (Fig. 1A,B).  

Stochastic noise in IR data is wavelength dependent 

with longer wavelength bands impacted more severely 

by high detector temperatures than shorter wavelength 

bands. In the most egregious cases, spatial structure is 

indiscernible making a statistical approach to noise 

remediation untenable (Fig. 1A). We therefore adopted 

a hybrid filtering approach in which the iterative outlier 

voting filter, is applied to wavelengths 1021.00 to 

2641.74 nm (approximately filtering zones 1 and 2 of 

the CRISM IR detector [1]) and the “non-local meets 

global” (denoiseNGMeet) denoising and restoration 

algorithm [11] is applied to wavelengths > 2641.74 nm 

(approximately filtering zone 3 of the CRISM IR 

detector [1]). The denoiseNGMeet algorithm leverages 

both spatial and spectral correlations of a hyperspectral 

image to remediate noise and restore spatial structure 

with non-local low-rank tensor approximation [11]. 
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Inter-Strip Radiometric Reconciliation. Variations 

in atmospheric and instrument state result in radiometric 

discrepancies between individual CRISM mapping 

strips. The relatively high density of spatial overlap 

between MRDR data in enables a wavelength-

dependent correction to reconcile component strips into 

a consistent radiometric framework tied to the highest 

quality data [8]. HSP data are sparsely connected 

spatially compared to the MRDR dataset, making this 

approach to achieving a consistent radiometric 

framework for the HSP data alone infeasible. Instead, 

we leverage the inclusion of HSP data (albeit reduced to 

the MSP wavetable) in the MRDR tile dataset. Our 

approach was to fit a surface across all wavelengths 

shared between the hyperspectral HSP and MRDR HSP 

data using a Multi-Layer Perceptron (MLP) regressor 

[12]. With this surface fit we apply a matrix 

transformation to the HSP data into the radiometrically 

reconciled space of the MRDR HSP data.  

Results:  We have tested our processing pipeline on 

CRISM map tile T0932 over Candor Mensa (4°50’S, 

75°50’ W). Figure 1 shows results from processing 

using two endmember filtering options: (i) an iterative 

outlier voting filter applied only in the spatial dimension 

(the approach used on MRDR data, Fig. 1C ‘FLT0’); (ii) 

the denoiseNGMeet algorithm applied to all 

wavelengths of the HSP data (Fig. 1C ‘NGM’). We are 

processing the hybrid filtering approach delineated in 

our methods (Fig. 1A,B) at the time of writing and these 

results will be presented at the conference.  

Discussion: Newly processed HSP mapping data 

will enable fresh insights into questions that cannot be 

answered with CRISM MRDR or targeted data alone. 

For example: how widespread are deeply buried 

occurrences of pre-Noachian Ca/Fe carbonate, and what 

does their occurrence imply for the chemistry of early 

wet environments? How continuous is alteration at 

depth, and what is the balance of alteration to hydrated 

silica vs. phyllosilicate? What is the distribution of 

phases that imply high alteration temperatures (epidote, 

prehnite), and what does the answer imply for early 

Martian evolution? We will investigate these questions 

in upcoming work featuring the HSP mapping dataset. 

References: [1] S. Murchie et al., JGRP, 112(E5), 2007. 

[2] S. L. Murchie et al., JGRP, 114(E2), 2009. [3] J. F. 

Mustard et al., Nature, 454(7202), pp. 305–309, 2008. [4] J. 

Carter, et al., JGRP, 118(4), 831–858, 2013. [5] J.-P. Bibring 

et al., Science, 312(5772), 400, 2006. [6] J.-P. Bibring et al., 

Mars Express: The Scientific Payload, 2004, 1240, 37–49. [7] 

B. L. Ehlmann et al., Nat. Geo., 1(6), 355, 2008. [8] F. P. 

Seelos, et al., LPSC 2019 Abstract #2635. [9] C. E. Viviano‐

Beck et al., JGRP, 119(6), 1403–1431, 2014. [10] S. L. 

Murchie et al., JGRP, 114, 2009. [11] W. He et al., IEEE 

Trans. Pattern Anal. Mach. Intell., 44(4), 2089–2107, 2022. 

[12] M. S. Phillips, et al., LPSC 2022, Abstract#1487. 

Acknowledgements: This work was supported by 

NASA MDAP Grant #80NSSC17K0534 

Figure 1 | Example filtering results (A, B) and CRISM browse products for Tile 0932 (C). A) HSP000161CD_01 pre-filtering 

(PRE), and filtered with a 3D iterative outlier voting filter (IOVF) on the entire image cube (FLT1) and with the denoiseNGMeet 

routine at wavelengths >2641.74 nm (FLT2). Band 15 shows the advantage of the denoiseNGMeet routine for spatial restoration 

of egregiously noisy bands. White arrows indicate examples of spatial restoration through the denoiseNGMeet routine. B) 

Spectral profiles from the red ‘x’ in A. Black arrows indicate examples where noise has been remediated. Note the improved 

quality of the >2641.74-nm region for FLT2. C) Example HSP (a, b, d, e, g, h) and MRDR (c, f, i) browse products generated 

after processing through the full HSP pipeline. Each row shows the same location. FLT0: filtered using the 2D IOVF; NGM: 

filtered with denoiseNGMeet routine; MRDR: multispectral map tile. HSP browse products reveal more detailed compositional 

variations than MRDR products. Final results using FLT2 will be presented at the conference. 
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