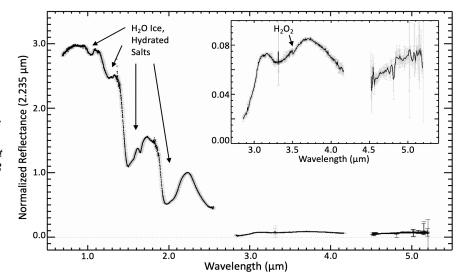
INVESTIGATING THE NATURE AND ORIGIN OF HYDRATED SALTS ON EUROPA. Richard J. Cartwright¹, Katherine de Kleer², Carl A. Schmidt³, Geronimo L. Villanueva⁴, Chloe B. Beddingfield^{1,5}, Tom A. Nordheim⁶, Kevin P. Hand⁶, Christopher R. Glein⁷, Joshua P. Emery⁸. Jennifer Hanley^{9,8}, and Cecilia L. Thieberger^{8,9}. ¹SETI Institute (<u>reartwright@seti.org</u>), ²California Institute of Technology, ³Center for Space Physics, Boston University, ⁴Goddard Space Flight Center ⁵NASA Ames Research Center, ⁶Jet Propulsion Laboratory, California Institute of Technology, ⁷Southwest Research Institute, ⁸Northern Arizona University, ⁹Lowell Observatory.

Background and Motivation: The surface composition of Europa is modified by possible communication with its internal ocean, interactions with Jupiter's magnetosphere, and delivery of material in impactors [e.g., 1]. Europa's surface is composed of a mixture of components modified by these processes, including H₂O ice [2], hydrated salts [3], sulfur-bearing species [4], molecular oxygen (O₂) [5], hydrogen peroxide (H₂O₂) [6], and carbon dioxide (CO₂) [7].


Salts on Europa likely originate as frozen brines sourced from its interior that are exposed in chaos terrains in Tara Regio and elsewhere [e.g., 3,8,9]. Freshly exposed brines are subjected to intense bombardment by Sⁿ⁺ ions and other charged particles [e.g., 10], driving radiolytic modification of surface components. Ground-based, optical observations detected Na and K in Europa's exosphere [11,12]. Similarly, Galileo's magnetometer detected Cl⁻ and Cl⁺ ions in a pickup cloud near Europa [13], but Cl has not yet been detected in its exosphere [14]. These different elements could have originated in salts that were sputtered off Europa's surface. Along with NaCl [e.g., 9], sulfates like epsomite (MgSO4*7H2O) are likely present on Europa [e.g., 15], dominating the spectral properties of its trailing hemisphere [16]. However, laboratory experiments indicate that sulfates are unlikely to form in Europa's ocean unless Na is rare [17]. Consequently, SO₄²⁻ might be formed primarily on Europa's surface via Sⁿ⁺ ion-driven radiolysis. In this

scenario, sulfates form from the molecular fragments of chlorides and other salts [15]. The source of exospheric K has yet to be identified, likely because frozen KCl is difficult to spectrally distinguish from H₂O ice [18]. Here, we present near-infrared reflectance spectra we have collected to assess the spectral signature of salts on Europa, using the SpeX spectrograph on NASA's Infrared Telescope Facility [19].

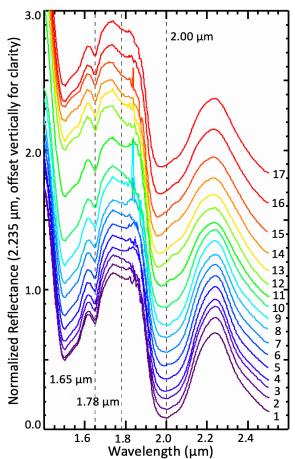
Observations and Data Reduction: Between 2020 and 2022, we collected 17 spectra using SpeX in short cross-dispersed mode (SXD, $0.7 - 2.55 \mu m$) and 7 spectra using SpeX's two long cross-dispersed modes (LXD_short, $1.67 - 4.2 \mu m$, LXD_long, $1.98 - 5.3 \mu m$) (*Table 1*). All spectra were calibrated and extracted using the Spextool data reduction suite [20], along with custom programs. SpeX's slit was oriented parallel to Europa's rotation axis to ensure that data collection was centered on the sub-observer longitude.

Results: The SXD and LXD spectra show numerous absorption bands consistent with H₂O ice mixed with hydrated salts, along with a 3.5- μ m band attributed to H₂O₂ [6] (*Figure 1*). The SXD spectra show absorption features near 1.78 and 2.0 μ m (*Figure 2*). The center of the 2.0- μ m band shifts from 2.00 μ m on Europa's leading hemisphere (spectra 1-9), to 1.98 μ m at transitional longitudes (spectra 10, 11, 16, and 17), to 1.96 μ m in spectra collected near the center of Europa's trailing side (spectra 12-15). This band center shifting is similar to the wavelength shifts observed in thermal

Figure 1: SpeX spectra of Europa collected in SXD and $LXD_long modes$ (midobservation, sub-observer longitudes of ~344° and ~340°, respectively, Table 1). Strong absorption bands between 0.9 and 2.5 µm are present in these data, resulting from H₂O ice mixed with hydrated salts. Inset figure shows a close up of the 3 to 5 µm region, highlighting a 3.5-µm band that is generally attributed to H₂O₂ formed from irradiation of H₂O ice.

cycling experiments for chlorides like hydrated CaCl₂ [18]. Furthermore, spectra 12-15 show the best evidence for a 1.78- μ m band that has been identified in near-infrared spectra of a variety of chlorides and other salts measured in the laboratory [e.g., 18,21]. In contrast to the spectral changes observed between 1.75 to 2.05 μ m, the center and shape of the 1.65- μ m band is remarkably consistent in all 17 SXD spectra, suggesting that crystalline H₂O ice and hydrated salts are omnipresent across Europa, at least in these disk-integrated data.

Future Work: We will continue to collect spectra of Europa at complementary sub-observer longitudes to the data presented here. We will compare all SpeX data to near-infrared spectra collected with other ground-based facilities and the James Webb Space Telescope [22]. Furthermore. we will compare all collected datasets to laboratory data of salts and other species.


Funding: This project is supported by a NASA ROSES Solar System Observations 2021 grant (80NSSC23K0031).

References: [1] Carlson, R. W. et al. (2009). *Europa* 283. [2] Pilcher, C. B. et al. (1972). *Science* 178. [3] McCord, T. B. et al. (1998) *Science*, 280. [4]

Table 1: IRTF/SpeX observations of Europa.

NumberLong. ()Lat. ()(mulexpos)129.91.1 $06/25/21$ $12:55$ 10 278.73.1 $08/01/22$ $15:55$ $7/$ 3 82.9 1.1 $06/22/21$ $12:15$ 10 4 82.8 2.8 $06/23/22$ $15:00$ 16 5 83.6 3.0 $07/18/22$ $12:10$ $7/$ 6 116.9 3.0 $07/29/22$ $11:45$ 50 7 138.6 3.0 $07/15/22$ $11:55$ 80 8 147.1 1.1 $07/28/21$ $15:10$ 24 9 157.0 -1.3 $10/17/20$ $5:45$ 40 10 172.1 3.0 $07/26/22$ $11:35$ 80	SXD	Sub-Obs.	Sub-Obs.	UT Date	UT Time	t _{int} (s)
2 78.7 3.1 08/01/22 15:55 74 3 82.9 1.1 06/22/21 12:15 10 4 82.8 2.8 06/23/22 15:00 16 5 83.6 3.0 07/18/22 12:10 74 6 116.9 3.0 07/29/22 11:45 56 7 138.6 3.0 07/15/22 11:55 86 8 147.1 1.1 07/28/21 15:10 24 9 157.0 -1.3 10/17/20 5:45 40 10 172.1 3.0 07/26/22 11:35 86	Number	Long. (°)	Lat. (°)		(mid-expos)	-int (-)
3 82.9 1.1 06/22/21 12:15 10 4 82.8 2.8 06/23/22 15:00 16 5 83.6 3.0 07/18/22 12:10 7/ 6 116.9 3.0 07/29/22 11:45 50 7 138.6 3.0 07/15/22 11:55 80 8 147.1 1.1 07/28/21 15:10 24 9 157.0 -1.3 10/17/20 5:45 40 10 172.1 3.0 07/26/22 11:35 80	1	29.9	1.1	06/25/21	12:55	100
4 82.8 2.8 06/23/22 15:00 16 5 83.6 3.0 07/18/22 12:10 7 6 116.9 3.0 07/29/22 11:45 50 7 138.6 3.0 07/15/22 11:55 80 8 147.1 1.1 07/28/21 15:10 24 9 157.0 -1.3 10/17/20 5:45 40 10 172.1 3.0 07/26/22 11:35 80	2	78.7	3.1	08/01/22	15:55	70
5 83.6 3.0 07/18/22 12:10 74 6 116.9 3.0 07/29/22 11:45 56 7 138.6 3.0 07/15/22 11:55 86 8 147.1 1.1 07/28/21 15:10 24 9 157.0 -1.3 10/17/20 5:45 40 10 172.1 3.0 07/26/22 11:35 84	3	82.9	1.1	06/22/21	12:15	100
6 116.9 3.0 07/29/22 11:45 50 7 138.6 3.0 07/15/22 11:55 80 8 147.1 1.1 07/28/21 15:10 24 9 157.0 -1.3 10/17/20 5:45 40 10 172.1 3.0 07/26/22 11:35 84	4	82.8	2.8	06/23/22	15:00	160
7 138.6 3.0 07/15/22 11:55 80 8 147.1 1.1 07/28/21 15:10 24 9 157.0 -1.3 10/17/20 5:45 40 10 172.1 3.0 07/26/22 11:35 80	5	83.6	3.0	07/18/22	12:10	70
8 147.1 1.1 07/28/21 15:10 24 9 157.0 -1.3 10/17/20 5:45 40 10 172.1 3.0 07/26/22 11:35 84	6	116.9	3.0	07/29/22	11:45	50
9 157.0 -1.3 10/17/20 5:45 40 10 172.1 3.0 07/26/22 11:35 84	7	138.6	3.0	07/15/22	11:55	80
10 172.1 3.0 07/26/22 11:35 84	8	147.1	1.1	07/28/21	15:10	240
	9	157.0	-1.3	10/17/20	5:45	400
11 213.1 1.1 07/18/21 15:20 24	10	172.1	3.0	07/26/22	11:35	84
	11	213.1	1.1	07/18/21	15:20	240
12 247.1 3.0 07/23/22 16:05 70	12	247.1	3.0	07/23/22	16:05	70
13 254.8 -1.3 10/18/20 4:55 42	13	254.8	-1.3	10/18/20	4:55	420
14 273.2 3.0 07/27/22 11:30 7	14	273.2	3.0	07/27/22	11:30	70
15 300.4 1.0 06/17/21 14:00 10	15	300.4	1.0	06/17/21	14:00	100
16 330.8 3.0 07/24/22 11:55 13	16	330.8	3.0	07/24/22	11:55	130
17 343.6 1.1 06/21/21 12:45 10	17	343.6	1.1	06/21/21	12:45	100
LXD_short 93.5 3.0 07/18/22 14:30 2,1	LXD_shor	93.5	3.0	07/18/22	14:30	2,120
135.0 1.1 07/28/21 12:20 2,8		135.0	1.1	07/28/21	12:20	2,800
277.4 3.0 07/27/22 12:30 1,2		277.4	3.0	07/27/22	12:30	1,200
LXD_long 126.0 3.0 07/29/22 13:55 2,7	LXD_long	126.0	3.0	07/29/22	13:55	2,760
147.7 3.0 07/15/22 14:05 2,1		147.7	3.0	07/15/22	14:05	2,160
206.1 1.1 07/18/21 13:40 2,1		206.1	1.1	07/18/21	13:40	2,160
339.6 3.0 07/24/22 14:00 2,5		339.6	3.0	07/24/22	14:00	2,508

Carlson, R. W. et al. (1999). Science 286. [5] Spencer, J. R. et al. (2002) AJ 124, 6. [6] Carlson, R. W. et al. (1999). Science 283. [7] McCord, T. B. et al. (1998) JGR 103. [8] McCord, T. B. et al. (1999) JGR 104. [9] Trumbo, S. K. et al. (2022). PSJ 3, 2. [10] Johnson, R. E. et al. (2004). Jupiter 485-512. [11] Brown, M. E. and Hill, R. E. (1996). Nature, 380. [12] Brown, M. E. (2001). Icarus 151. [13] Volwerk, M. et al. (2001). JGR 106. [14] McGrath, M. et al. (2015). DPS 47, 409.04. [15] Brown, M. E. and Hand, K. P. (2013). AJ 145. [16] Hibbitts, C. A. et al. (2019). JGR 107. [17] Vu, T. H. et al. (2016). ApJL 816. [18] Thomas, E. C. et al. (2017). ACS 1, 1. [19] Rayner, J.T., et al. (2003) PASP, 115, 362-382. [20] Cushing M. C. et al. (2004) Astro. Soc. Pac. 116, 362. [21] Hanley, J. et al. (2014). JGR 119. [22] Villanueva, G. L. et al. (2022). JWST Prog. 1250.

Figure 2: SXD spectra of Europa, labeled using the same numbers as Table 1 (1-17). On Europa's leading hemisphere, the morphology of the 2.0- μ m bands, and the continua near 1.78 μ m, are broadly consistent with the spectral properties of H₂O ice (1-10). On Europa's trailing hemisphere, the 1.78- μ m and 2.0- μ m bands suggest the presence of hydrated salts and H₂O ice (11-17). The center and shape of the 1.65- μ m features are similar across Europa.