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Introduction: Obtaining accurate chemical compo-

sitions of Mars rocks along the Perseverance rover trav-
erse is critical to Mars 2020 mission goals, including the 
assessment of samples planned for return to Earth [1]. 
SuperCam aboard Perseverance rover is a multi-modal 
instrument that can be used to produce estimates of ele-
mental abundances of rocks using its laser-induced 
breakdown spectroscopy (LIBS) capability. After a 
short laser burst at a remote target, SuperCam’s spec-
trometers collect light from the resulting plasma (emis-
sion spectra), which is indicative of the target’s ele-
mental composition (Fig. 1). This function is in addition 
to SuperCam’s time-resolved Raman spectroscopy, vis-
ible and infrared reflectance spectroscopy (VIS/IR), re-
mote microimager, and microphone capabilities [2,3].  

For roughly a decade of ongoing chemometric activ-
ities across the SuperCam and ChemCam (a similar in-
strument on Curiosity rover) team members, machine 
learning (ML) algorithms have been explored and 
benchmarked in trade studies to improve elemental 
quantifications [e.g., 4, 5]. Regressors are a particular 
type of ML algorithm that can make predictions based 
on a learned functional response. They are useful in pro-
ducing models that account for non-linear responses of 
LIBS spectra to the composition of target materials. 

Traditionally, uncertainties on regressors have been 
treated in a static sense by the ChemCam and SuperCam 
team, i.e. the uncertainty of the estimation is predeter-
mined and is only a function of the estimated chemical 
abundance. As part of SuperCam Trace and Minor Ele-
ment Working Group activities [6], we have bench-
marked a unique regressor method, the Gaussian Pro-
cess Regressor (GPR), which can generate chemical 
uncertainties that can respond in a dynamic manner 
to LIBS measurements. The method shows promise in 
producing similar and sometimes better performance 
to other regression algorithms, while providing more  
robust, per-prediction uncertainty quantification.  

Background: LIBS quantification is aimed at deter-
mining chemical quantities and their uncertainties from 

photon emission spectra. Learning this functional re-
sponse demands a robust set of existing LIBS spectra 
where the composition of the target is known (here re-
ferred to as library spectra). We leverage a large library 
of spectra collected at Los Alamos National Laboratory 
with a replica of the SuperCam instrument on Mars. 

Developing a robust Machine Learning regressor to 
learn the functional response of a target’s composition 
and the resulting spectra involves training, validation, 
and test steps. When a regressor is properly trained to 
LIBS spectra and compositions, elemental concentra-
tion(s) of a rock can be inferred from its emission spec-
trum. Training is performed by an optimization scheme 
on a subset of the library data. Models are then tested 
against data that was not included in the previous steps 
in order to assess model performance. 

The performance of predictions of the test set are of-
ten used to characterize the uncertainties of model pre-
dictions. As shown in Fig. 2 (top), the prediction of a 
library target’s elemental abundance can deviate from 
the true (known) abundance. To estimate this deviation, 
the root mean square error of the prediction (RMSEP) is 
computed locally (Fig. 2, bottom). This local-RMSEP 
method is a static approach, where uncertainty is held 
constant for a given abundance [5]. However, this 
method may over or underestimate uncertainty. For ex-
ample, if a library set contains many samples with both 
high SiO2 and Al2O3, but very few samples with both 
high SiO2 and low Al2O3, then predictions of rocks with 
like the former should be more certain than those of the 
latter. However, the local-RMSEP method would as-
sume an identical uncertainty for both. GPR, however, 
provides an estimate of uncertainty that is computed on 
a per-prediction basis, making it robust to these factors. 

Methodology: We assess the performance of GPR 
using the open-source Python package scikit-learn [7]. 
Data handling, manipulation, and plotting were per-
formed using the Pandas, NumPy, SciPy, and Mat-
plotlib packages. Spectra were pre-processed according 

Figure 1 – SuperCam LIBS 
spectrum (adapted from [5]) 
with coverage between wave-
lengths 244 – 341, 382 – 467, 
and 535 – 853 nm provided by 
three optical spectrometers 
[2,3]. Photon emission from the 
laser-generated plasma provides 
spectral peaks diagnostic of ele-
mental concentration. 
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to instrument response characterization, calibration, and 
preparation procedures [5].  For each element, several 
hundreds of models were developed and the best model 
for each element was chosen based on validation perfor-
mance. A multivariate approach (using multiple spectral 
features/wavelengths) was implemented instead of uni-
variate (e.g. methods based on a single parameter, like 
the strength of an emission line) as we found generally 
better performance from multivariate methods. 

Models were developed using different permu-
tations of regressor parameters and preprocessing steps 
that were developed as part of SuperCam Trace and Mi-
nor Element Working Group activities [6]. These pa-
rameters included different GPR kernel designs, as well 
as three different elemental normalization methods, 
spectral masks, and selected features within the spectral 
window. Spectral masks are domains (wavelengths) of 
the spectra that are removed from the data, resulting in 
a smaller dataset. Domains are chosen based on the lo-
cation of the dominant emission features for each ele-
ment. For example, the full spectrum, the 375 – 465 nm, 
and the 620 – 710 nm range were explored for barium, 
which has strong lines at 454 and 650 nm, among others. 
Within each window, different numbers of features 
(specific wavelengths) of the spectra were provided to 
the models, using a feature selection ML algorithm, that 
itself is cross validated. In total, some elements reached 
nearly 1000 permutations of GPR models.  

We also applied a +/- 1 pixel shift in wave-
length to the library spectra and independently tested the 
behavior on shifted spectra. This was done to character-
ize the effect of variations in wavelength calibrations 
and to ensure that the models were robust against this 

effect. We also 
tested model per-
formance on spe-

cially-designed 
calibration tar-
gets that are both 
in the library da-
taset and on Per-
severance rover, 
to understand the 

quality of calibration transfer. All calibration targets 
were in the test set for this reason and for certain ele-
ments we removed outlier samples with very high quan-
tities from the library. 

Results: We find that GPR can provide accurate 
chemical predictions of library targets, while produc-
ing per-prediction uncertainties for targets where the 
prediction is expected to be less certain (see Fig. 3). 
Higher uncertainties are generally associated with target 
types that are poorly populated in the library. For Li, 
high abundances are less populated in the library set, 
producing large error bars near ~150 ppm in Fig. 3. We 
also report larger uncertainties for calibration targets 
and targets at longer distances. We are currently explor-
ing the source of this behavior and distance measure-
ments are being considered in the development of an up-
dated spectral library. Assessment of the correlations 
between GPR-reported uncertainties and library set, tar-
get factors, and other aspects is ongoing.  

As part of SuperCam Trace and Minor Element 
Working Group activities, we found that GPR often 
gives comparable results to other regressors in terms of 
global RMSEP, but with the advantage of providing 
more information about the reliability of individual pre-
dictions. We are also expanding the spectral library and 
are exploring GPR for new major element models. 
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Figure 2 – (top) Actual (known) SiO2 abundances of library 
targets and the predicted abundances from an ML regressor 
model that has a global RMSEP of 6.1 wt% in this case 
[adapted from 5]. The black (1:1) line defines where predic-
tions match the actual (known) abundance. The local RMSEP 
of this model varies as a function of the predicted abundance. 

Figure 3 – (top) 
Actual (known) Li 
abundance (ppm) 
and the predicted 
Li abundance 
(ppm)  from GPR 
for unshifted li-
brary data. (bot-
tom) The same fig-
ure, with the addi-
tion of shifted and 
calibration targets.  
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