
Trace and Minor Element Quantification with SuperCam Laser Induced Breakdown Spectroscopy (LIBS).  
R.B. Anderson1, T.S. Gabriel1, O. Forni2, J.A. Manrique3, P. Gasda4, D. Vogt5, A.M. Ollila3. 1U.S. Geological Survey 
Astrogeology Science Center, Flagstaff, AZ (rbanderson@usgs.gov), 2Institut de Recherche en Astrophysique et 
Planétologie, Toulouse, France, 3University of Valladolid, Valladolid, Spain, 4Los Alamos National Laboratory, Los 
Alamos, USA, 5DLR, Berlin, Germany. 

Introduction:  Trace and minor elements are 
present in small quantities in most rocks and can provide 
important information about the formation and 
diagenesis of those rocks [e.g. 1]. The Mars 2020 
SuperCam team has been working on accurately 
quantifying the trace and minor elements Li, Sr, Rb, Ba, 
Cr, and MnO using LIBS data. We evaluated a variety 
of preprocessing steps and regression methods to find 
the optimal solution for quantifying each element. 

Data: This effort uses the same suite of LIBS 
spectra (collected prior to launch on samples of known 
composition) that is currently used for quantification of 
the major element oxides [2]. For each element the 
spectra were split into five “folds” with similar 
distributions of the element of interest in each fold. Four 
of these folds were designated as the “training set” and 
one was designated as the “test set” which is held out 
during model optimization. Afterwards, the test set is 
used to evaluate the performance of the regression 
models on novel data. All SuperCam calibration targets 
(SCCTs) were assigned to the test set. For several 
elements, a small number of samples had extremely 
high concentrations and were removed as outliers. 
Because targets with very high MnO have been detected 
on Mars, we evaluated MnO models trained and tested 
on several different concentration ranges (see Table 1). 

Preprocessing: Several different preprocessing 
steps were evaluated. These included peak binning [2, 
3], restricting the input spectra to a single spectrometer, 
using feature selection to reduce the number of spectral 
channels used as model input, normalizing the spectra 
on a per-spectrometer basis, and normalization to the 
amplitude of the O triplet near 777 nm. We found that 
peak binning and normalization to O generally did not 
improve the results, with the possible exception of 
MnO, which may benefit from binning. Using a single 
spectrometer and/or applying feature selection were 
beneficial in many cases. 

We also applied a +/- 1 pixel shift in wavelength to 
the data. Models were trained and tested on the 

unshifted and shifted data to ensure robustness to slight 
variations in the wavelength calibration.  

Quantification: We considered multiple regression 
models to relate LIBS spectra to abundance of each 
element. Prior work has shown good success with 
univariate models for trace and minor elements [e.g. 4], 
but we found that multivariate models performed better 
and focused most of our efforts on selecting the best 
model for each element. The algorithms considered 
included: Partial Least Squares (PLS), Elastic Net, 
Orthogonal Matching Pursuit (OMP), Random Forest 
(RF), Gradient Boosting Regression (GBR), eXtra 
Trees (XT), Support Vector Regression (SVR), and 
Gaussian Process Regression (GPR) (see [6]).  

Model parameters were optimized using cross 
validation over the four training set folds. To select the 
best overall models, we first determined the lowest root 
mean squared error of cross validation (RMSECV) 
across all models and preprocessing permutations. 
Then, we found the standard deviation of the RMSE 
from the individual folds for that model. All models 
with RMSECVs that fell within one standard deviation 
of the minimum RMSECV were considered to have 
similar cross validation performance. We then selected 
the best model from among those based on the minimum 
root mean squared error of prediction (RMSEP) – the 
performance on the test set. We calculated the RMSEP 
for the test set spectra (including SCCTs) collected at 3 
m, with wavelength shifts of -1, 0, and +1 pixels 
applied. Several team members performed this model 
selection process independently and their results were 
compared to identify the best models. 
Results: Table 1 summarizes the current best models 
for the trace and minor elements. We found that the Cr 
performance was typically quite poor. Although some 
models appear to perform better on non-SCCT 
laboratory targets, more work is needed before we can 
be confident of Cr results. Most geologic targets have 
very low MnO, but high MnO has been detected on 
Mars.  We are evaluating how best to handle the wide 
range of possible MnO values and sparsity of mid- to

 
 Li (ppm) Sr (ppm) Rb (ppm) Ba (ppm) MnO (wt.%) MnO (wt.%) MnO (wt.%) 
Range 0-1000 0-2000 0-750 0-2500 0-2 0-5 0-50 
Model GBR GBR GBR GBR GPR GPR GPR 
# Features 200  800 200  800 50 135 15 
RMSEP  12 104  32 222 0.17 0.63 0.48 
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high-MnO training and test samples in the current data 
set. Initial MnO results that blend submodels trained on 
different composition ranges, similar to the approach 
used for ChemCam [5], are promising but more work 
needs to be done.  

Line detection check: Multivariate regression 
methods can partially correct for “matrix effects” by 
utilizing emission lines from elements other than the 
element of interest [2]. However, this also introduces 
the risk of incorrect predictions when an unknown target 
does not follow the same correlations or anticorrelations 
that were present in the training data. For trace and 
minor elements, which tend to have weak emission lines 
compared to more abundant elements, it is not unusual 
for the diagnostic emission lines for the element to be 
absent when concentrations are very low. In this 
situation the model will still predict a concentration by 
using assumed correlations with major elements. 

To avoid a situation where scientists unknowingly 
use predictions for undetected elements, we have 
developed a simple method for measuring the strength 
of diagnostic lines for each element. When no emission 
line is detected, we can choose to flag predicted 
abundances with a warning or refrain from reporting an 
abundance for the element altogether. 

This method uses the maximum standard deviation 
of the shot-to-shot spectra in a pair of continuum 
locations near the line of interest as a proxy for the noise 
of the observation. It evaluates whether the intensity at 
the center of the emission line of interest is greater than 
a noise threshold (Figure 1). By visual inspection of 
many spectra, we found that the threshold at which a 
human identifies an emission line in the spectrum “by 
eye” is ~0.6 times the noise standard deviation. 
Predictions below this signal to noise threshold may still 
be accurate: the correlations identified by the models are 
real and hold true for many targets (Figure 2) However, 
such predictions should be used only with extreme 
caution. The “detection checker” will soon be 
implemented in the SuperCam quantification pipeline 
for both major and minor elements.   

Future work: Before the regression models 
identified in Table 1 can be used in daily operations, 
their performance on Mars data to date must be 
evaluated. We are currently working on comparing the 
quantities predicted for spectra inferred to be pure 
minerals with the expected trace and minor element 
abundances for those minerals. This evaluation is 
ongoing at the time of writing and may lead to the 
selection of different final models than those currently 
listed in Table 1. 

Concurrent with the efforts to quantify the trace and 
minor elements, the SuperCam team has been collecting 
a new, more extensive suite of LIBS data in the 

laboratory at Los Alamos National Laboratory with a 
clone of the SuperCam instrument. This new data is 
expected to improve quantification accuracy and 
robustness for both major and minor elements. 

 
Figure 1: Illustration of the line detection check applied to 
the Sr 421.67 nm line on the first SuperCam target, Máaz. 
Baseline nodes are the two locations used to define the 
baseline and estimate noise. The gray error bars indicate the 
standard deviation of the shot to shot spectra. The dashed 
red line is the threshold for detection of 0.6 times the 
estimated noise. The target Máaz has a small but clearly 
visible Sr peak, with signal to noise of 2.4. Thus Sr is 
present and quantification is appropriate. 

 
Figure 2: Example predicted vs actual Rb concentrations 
in the test set. Color corresponds to the signal to noise 
(SNR) calculated by the detection checker tool. Red points 
have SNR below the threshold of 0.6 and therefore have 
little or no detectable Rb line, but still follow the 1-to-1 line 
trend due to correlations with other elements in these 
terrestrial laboratory standards.  
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