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Introduction: Currently, LIBS instruments are being
used on multiple Mars missions for analyzing the geo-
chemistry of the Martian surface in-situ [1, 2, 3]. In
recent years, due to the amount of acquired LIBS data,
as well as the complexity of the underlying physics of
the technique, researchers increased their focus on new
data analysis strategies, such as Machine Learning (ML)
algorithms. Both supervised and unsupervised ML tech-
niques have been successfully applied to LIBS spectra
for both quantitative and qualitative analysis [4, 5, 6].
In this study, we compare the performance of two
Back Propagation Neural Network (BPNN) classifica-
tion schemes for LIBS data. The two attributes we want
to classify are the type of Mars simulant (basaltic rock
mixture) of the samples and a salt component. In the
first scheme, the Mars simulant and salt classifications
are separated into two consecutive BPNN classifiers. In
contrast, the second scheme consists of a single multi-
label BPNN classifier.

Sample preparation and data acquisition: We pre-
pared a total of 100 pressed rock samples (1g pellets),
consisting primarily of one of four different basaltic
Mars simulants (MGS-1, MGS-1C, MGS-1S and JEZ-
1) [7]. We also added one of four different salts (NaCl,
MgCO3, CaSO4×2(H2O) and MgSO4×1(H2O)) with
varying concentration ( 0.5 − 15 wt%) to each sample
to simulate a realistic variance of water-deposited salts
and cements in Martian sedimentary rocks. To account
for variations in laser irradiance due to differences in
sample-to-laser distance, as is the case for in-situ mea-
surements on Mars [1], each sample was measured with
five different laser pulse energies ranging from 5mJ –
50mJ (6ns pulse duration and 300µm laser spot diam-
eter). Measuring each sample five times (= one exper-
iment), we ended up with a total of 2500 LIBS spec-
tra with 28507 channels each. All measurements were
conducted in a dedicated LIBS setup in our laboratory
under simulated Martian atmospheric conditions (see [8]
for a detailed description of the setup). All this results
in a dataset which can be analyzed according to differ-
ent group attributes, i.e. the Mars simulant, added salt,
concentration of the added salt etc. Here we focus on
classifying the Mars simulant and salt component.

Data preprocessing and model architectures: Before
training, we standardized each spectrum by subtracting
the mean and dividing by its standard deviation. We then
reduced the dimensionality of the dataset using Princi-

Figure 1: First two PC of the full data set. The different Mars
simulants are mainly grouped together but there are overlaps
for these two first PC.

pal Component Analysis (PCA) from (2500, 28507) to
(2500, Din, where Din is the input dimension of the
BPNN.
Both classification schemes are sketched in Fig.2. All
BPNN parameters are shown in Tab.1.
Scheme 1 consists of two classification steps: The first
for prediction the Mars simulant (BPNN 1, 4 outputs),
and the second predicting the added salt (BPNN 2, 5 out-
puts: 4 salts + ”no salt”). Therefore, we have a total
of 5 BPNNs. Note that we did a new PCA for each of
the 4 salt classifiers (BPNN 2), indicated by the PCA∗

in Fig. 2. BPNN 1 and all BPNN 2 were trained for 20
epochs with a learning rate LR = 0.005, LeakyReLU
activation and Adam optimizer.
The second classification scheme uses one BPNN
(BPNN 3) and does a multi-label classification of Mars
simulant and salt simultaneously. Therefore, we gener-
ated a 9-dimensional one-hot encoded label vector: 4
dims. for the Mars simulants and 5 dims. for the salts
(4 salts + ”no salt”). BPNN 3 was trained for 250 epochs
with a learning rate of LR = 0.0005, LeakyReLU acti-
vation and Adam optimizer.

Din Hidden layer size Dropout rate BatchNorm Neg. slope Batch size

Scheme 1
BPNN 1
BPNN 2

16
16

15
15

×
×

×
×

0.1000
0.0075

25
5

Scheme 2 BPNN 3 16 30 0.2 ! 0.05 128

Table 1: BPNN parameters for both classification
schemes. Neg. slope is a parameter of the LeakyReLU
function.
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Figure 2: Sketch of both classification schemes. Scheme 1
deploys a step wise approach for classifying the Mars simulant
and added salt, while Schem 2 does both simultaneously with a
multi-label classification.

Benchmark training and model evaluation: Each
BPNN was trained using 100 different train-test split
configurations. For each configuration, a train-test split
ratio of 0.88/0.12 was chosen. We always kept five mea-
surements from the same experiment in either the train or
the test set in order to not distort the results by showing
the BPNN data from the same experiment in both sets.
Furthermore, the train-test splits where constrained such
that all class labels have a roughly uniform distribution,
i.e. splits with very unbalanced distributions of Mars
simulant and added salts were neglected. The mean test
accuracies for correctly predicting a salt, given the Mars
simulant has been classified correctly, for both schemes
are shown in Tab.2.

JEZ-1 MGS-1 MGS-1C MGS-1S

Mean acc. [%]
scheme 1
scheme 2

74.4
73.3

70.4
80.7

80.2
81.6

67.4
70.3

Table 2: Mean test accuracies for predicting a salt, given the
Mars simulant is correctly predicted, for both schemes.

From these results, we conclude that there is no gain
in splitting up the classification into submodels when us-
ing BPNNs. The second scheme actually performs over-
all slightly better than the step-wise classifier, as can be
seen in Tab.2.

Generalization to newly measured data and outlook:
To assess the generalization ability of our models, we
prepared two new samples, consisting of JEZ-1 with
NaCl (sample A) and MGS-1 with MgSO4×1(H2O)
(sample B). Both samples were prepared in the same way
as the original samples and measured five times using
three different laser energies (out of the five laser ener-
gies used in the first measurement cycle). We then pro-
jected these spectra into the PCA space used for initial
dimensionality reduction and fed the first 16 PC scores
into classification Scheme 2. The model did not achieve

Figure 3: PC 5 and PC 6 for old and new measurements. We
projected the new data into the PCA space of the original data
set. PC 5 and 6 of the new data show a clear shift relative to the
old data.

satisfactory accuracies. For sample A, the Mars simulant
prediction accuracy was 47%, the salt prediction accu-
racy was also 47%, and the accuracy of correctly pre-
dicting both was 26.7%. For Sample B, the results were
40.0% (Mars simulant), 6.7% (salt), and 0% (both). This
significant difference in performance can be due to two
factors:

• The BPNN may be overfitted to the data.

• There may be differences in the chemistry of the
Mars simulants or the experimental conditions be-
tween the two measurements (which were taken 11
months apart).

Because we did not observe indications of severe over-
fitting during training, we suspect that the poor perfor-
mance of the model is due to differences in the data. This
is supported by a shift observed in the new scores of PC 5
and PC 6 compared to the old PC scores, as can be seen
in Fig. 3. This shift is only present in these two com-
ponents. When analyzing the loadings of these two PC,
we see indications of line shifts, which can be caused
by changing wavelength calibration. Further investiga-
tion is needed to fully understand this phenomenon. In
addition, we will explore convolutional neural network
architectures for this classification task.
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