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Introduction:  In recent years, Machine Learning 

has progressed to the point where object recognition 
and detection of digital images has become as 
(statistically) reliable as manual detection. This has led 
to several interesting breakthroughs regarding how 
other planetary surfaces can be rendered for visual 
inspection. [1-3] 

Our group focused on the creation of a crater 
detection algorithm by using a combined set of open 
access programs pieced together such that we can 
analyse the highest resolution images of Mars and the 
Moon [2,4,5]. This algorithm is not generic, it has to 
be trained for each specific planetary body, but once 
that is done, we have a database of craters to the 
smallest diameter ranges detectable in the images.  For 
Mars, that resulted in a database of ~94million craters 
with diameters down to 50m [4]. There is no need to 
use the machine learning to count the craters larger 
than 1km because that database has been produced 
manually [6,7] 

This algorithm is used to augment and enhance 
crater counting techniques and we have used it to 
locate the source craters of two different groups of 
martian meteorites [4,5].  This was accomplished in 
part because of the ability to visualize the entire dataset 
which provided a way to pinpoint relevant craters of 
interest, narrowing the field of potential source craters 
from 70,000 to 19. [4].  

Here we will show the results of the algorithm we 
have retrained and applied to the Moon [3] to visualize 
the region around the Apollo 12 landing site.  We 
chose this area for two reasons.  It has been extensively 
mapped already with lots of crater counting ages 
deteremined, that can be verified with samples [8,9].  
And it also allows us to test how the machine learning 
results might be able to identify geologic units based 
on crater densities.  

Data and Results: We chose an area around the 
Apollo 12 landing site (fig 1) that closely overlaps the 
area mapped by [9]. The machine learning algorithm 
was applied to NAC images from the LRO mission [3]. 
The algorithm also took, as input, the Kaguya global 
lunar mosaic over the Apollo 12 landing site region. 
Details of the algorithm are found in [3].  

Our focus here is on how to use the results to 
maximum value. We present several visualisations of 
the area using the results of the algorithm over an area 
8 x 9˚ centered on the Apollo 12 landing site 

(bounding North is 1˚N, South is -8˚S, West is -28˚W 
and East is -20˚W). There are 679,026 craters ranging 
in diameter from 20m to 7.5km. This dataset was 
divided into diameter ranges that correlate to the root 2 
bins used in crater counting chronologies.  However, 
our focus here is the distribution of the craters. Figure 
1 shows a reproduction of the Apollo 12 map (1b) 
produced by [9] along with the LROC WAC image of 
the landing site region (1a). Fig 1c illustrates the 
distribution of craters by diameter ranges for 3 size 
ranges – 1 to 8 km, 354 to 500m, and 125 to 177m.  
Figure 1d shows the crater density in 0.1˚ x 0.1˚ grid 
squares for the same diameters as shown in 1c.  

Comparing the crater distribution and crater density 
maps to the LROC and geologic map is very 
interesting. First it is noteworthy that the geologic 
features are not visible with the data between 1 and 
8km, but when smaller crater sizes are plotted, we start 
to see features that correlate with the optical and 
geologic maps. The features start to appear at 
diameters less than 500m, but are particularly clear 
between 125 and 177m, where the Lansburg crater 
stands out and the Imbrium Fra Mauro material is 
easily identified as having a lower crater density.  

This is a promising use of the large datasets that 
can (and will) be generated using machine learning 
techniques. These visualisations open up a new view of 
Moon as well as other planetary bodies. Future work 
will expand the use of machine learning to identify 
other features of interest that can be built into a broad 
geologic mapping method.  
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