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Introduction: Northwest Africa (NWA) 11444 

(Fig. 1) is a lunar melt breccia [1], or lunar fragmental 

breccia using the new lunar meteorite nomenclature 

scheme [2]. While it has not yet been studied in detail, 

it has been tentatively linked to a large pairing group 

of lunar breccia finds from Northwest Africa- the 

Northwest Africa 8046, or “Algerian Megafind” clan  

[3] that may originate from the lunar farside [4]. A 

notable characteristic of NWA 11444 is that it contains 

relatively abundant iron-nickel metal grains [1]. Such 

components may be candidates for in situ resource 

utilization of the lunar surface. 

  
Figure 1. Lunar meteorite NWA 11444, approximately 8x6 

cm.  © Trustees of the NHM.  

 

We investigated a polished section of NWA 11444 

to provide an initial description of this important sam-

ple, investigate possible pairings and to particularly 

characterize its metallic components. We searched in 

detail for refractory platinum group element alloy mi-

cronuggets (PGMs), which have been shown to be a 

component of chondritic samples and especially the 

carbonaceous chondrites [5] that may account for a 

significant proportion of the impact flux to the lunar 

surface [6]. Since PGMs are highly refractory and re-

silient, if they were contained within any impactors 

then they may survive their sojourn on the lunar sur-

face intact.  

  Techniques:  We analyzed BM.2017,M3 section 

P23253, which has as a dimension of approximately 16 

x 10 mm. Large area elemental mapping has been car-

ried out using an Oxford Instruments AZtec EDS sys-

tem. A ZEISS Evo LS15 SEM has been used to map 

the complete sample (20 kV, 2.2 µm pixel resolution, 

~34 mega pixels), and two smaller regions were 

mapped with a ZEISS Ultra FE-SEM (12 kV, 160 nm 

pixel resolution, 33 and 28 megapixels).  The sample 

was then mapped using the TIMA SEM-EDX system 

at 25 kV and 13 nA at 2 μm pixel size for 10.5 hours 

acquiring 3.4M spectra. It was then scanned at 0.2 μm 

pixel size, on phases >50% brightness and the sur-

rounding 3 μm, for 15 hours acquiring 36M spectra. 

Mineral compositions were obtained using the JEOL 

JXA-8530F electron microprobe at 20kV. 

Petrological and Mineralogical Description: The 

sample is a polymict breccia, composed of angular to 

sub-rounded clasts up to ~8mm across of many com-

positionally and texturally diverse rock types, held 

together by a largely recrystallized feldspathic glass. 

Clasts include basalt, anorthosite, gabbro, impact melt, 

and many isolated mineral grains of olivine and pyrox-

ene. A modal analysis by the TIMA suggests the main 

components to be anorthite (32%), glass (~27%) and 

An85 (19.5%). Ilmenite and chromite are significant 

component of many of the clasts.  Carbonate rich veins 

are abundant and cross cut the clasts, especially on one 

side of the section; these are likely produced by terres-

trial weathering as are occasional baryte grains. The 

section contains many grains of sulfide (troilite) and of 

Fe-Ni metal (the latter being more typically a minor or 

rare component of lunar samples), but the metal is not 

evenly distributed across the section; one melt clast in 

particular is especially rich in both metal and sulfide, 

with one sub-rounded metal grain within the clast ~200 

µm in size (Fig. 2).  

Plagioclase compositions are invariably anorthosit-

ic, ranging from An88 to (more commonly) An98. Oli-

vine compositions, in contrast, are highly variable, 

with some clasts having Fo77-81, and others more Fe- 

rich (Fo43-44). One large (~500 micron) fayalitic grain 

within a gabbroic clast has a Fo10-11. Pyroxenes are also 

highly variable; they occur in most of the clasts and 

range from orthopyroxene (typically Fs 20-50) to augite 

(Fs30Wo41). Clear exsolution textures are common both 

in clast derived pyroxenes and in isolated grains. 

    Discussion: Comparison of silicates to those in oth-

er lunar samples: The composition of silicates, espe-

cially olivine and pyroxene, varies greatly between 

clasts making comparisons to other lunar meteorites 
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challenging. Some clasts have olivine compositions 

around Fo80, with anorthite compositions around An95-

97. This composition falls within the gap between typi-

cal lunar ferro- anorthosite (FAN) and Mg suite rocks, 

similar to clasts reported from NWA 11303 [7], 

strengthening evidence for a pairing relationship be-

tween these meteorites. 

A feature of the Algerian Megafind meteorites is that 

they typically contain olivine with a mean value of 

Fa33 (range Fa20-42)[3]. The range of olivine composi-

tions we observe in NWA 11444 is much broader, 

from Fo10 to Fo88, with a value of around Fo44 the mean 

value. The difference may, however, be  a random ef-

fect due to the wide diversity of clasts in this and other 

lunar breccias.  

 

           
 

Figure 2. Net intensity elemental map of a melt clast rich in 

Fe-Ni grains (purple). Metal is associated with sulfides (or-

ange). Carbonate veins cross cut the clast (light blue).  

  

Origin of metal: Metal in lunar samples can either 

crystallize from a highly reduced melt [8, 9] or can be 

meteoritic in origin [9, 10, 11]. Endogenous lunar met-

al has a wide range of compositions, with up to 3 wt% 

or more Co, and > 50 wt% Ni [e.g. 8, 11]. Exogenous 

meteoritic metal has a more constrained composition, 

with between 5-15% Ni and 0.2-1.0% Co [9] and a 

Ni/Co ratio similar to the cosmic value of 20. All the 

metal grains analyzed in NWA 11444 have a composi-

tion compatible with a meteoritic origin (Figure 3), 

consistent with an interpretation of consolidation of the 

breccia near the lunar surface, where it was available 

to acquire a high impact flux. Such grains are a testa-

ment to the record of bombardment the lunar surface 

has experienced, and can be used to help constrain the 

nature of the flux of planetary materials to the Moon 

[10]. 

 

Figure 3. Co and Ni abundance of Fe-Ni metal grains. Data from 

NWA 11444 shown as red dots. The meteoritic field defined by [9] 

is given as a yellow range and the cosmic Ni/Co is also shown. Vari-

ous lunar lithologies from the literature are shown as blue fields. The 

metal from NWA 11444 is most plausibly meteoritic rather than 

endogenous lunar in origin. Diagram after [11]. 

 

Search for PGMs: Given the significant abundance 

of meteoritic metal in NWA 11444, we anticipated it 

would be a good candidate for a detailed search for 

PGMs. However, despite the search as detailed above, 

no nuggets were located with a size > 1 m. This may 

imply either that the impact flux of nugget-bearing 

meteorites to this rock was not sufficiently high to al-

low detection, or that the nuggets were subsequently 

destroyed by impact processes. Future work will study 

other lunar impact breccias for comparison.  

    Conclusions: NWA 11444 may be a part of the Al-

gerian Megafind pairing group, though further work is 

needed to confirm this. If so, this may mean that the 

pairing group originated close to the lunar crust, ena-

bling it to assimilate impact derived debris. 
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