ENABLING TECHNOLOGIES FOR ACHIEVEMENT OF LUNAR SCIENCE GOALS: A EUROPEAN PERSPECTIVE. C. H. van der Bogert¹, J. Flahaut², I. Crawford³, and S. Vincent-Bonnieu⁴, ¹Institut für Planetologie, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany (vanderbogert@uni-muenster.de); ²CRPG, CNRS-UMR7358/Université de Lorraine, France; ³Birkbeck College London, United Kingdom; ⁴ESA-ESTEC, Noordwijk, Netherlands.

Background: The Moon is a high priority target for exploration by the world's space agencies [1]. In this context, key lunar science questions have been compiled, discussed, and reviewed by the lunar science community in the course of several major studies. In particular, the American National Research Council (NRC) published a report entitled "Scientific Context for Exploration of the Moon" [2], which has served as a reference for experiment, mission, and strategic planning since its publication in 2007. Recently, the Lunar Exploration and Analysis Group reviewed the progress made on achieving the goals outlined in the NRC report [3], where they retired some goals and added new goals based on the results and questions arising from recent studies and missions. These and other reports and papers (e.g. [4,5]) were used to support the definition of ESA's scientific and technological strategies for the Moon [6,7]. Recently, new white papers were produced for ESA's SciSpacE strategic planning process [8] to summarize the documentation existing and formulate recommendations, particularly for technological capabilities needed for addressing top science goals (Table 1).

Key Enabling Technologies: Key steps for future long-term lunar exploration will require the development of enabling technologies, including: (1) precision landing and automated hazard avoidance, (2) surface mobility, (3) power and heating systems to enable night and PSR survival, (4) tele-robotics, (5) significant (>1000 kg) landed payload masses, (6) deep (10-100m) drilling capability, (7) sample return capability, (8) cryogenic sampling, caching, and return, and (9) development of human operational capabilities in the lunar vicinity and/or on the lunar surface.

This list is not exhaustive, but serves to highlight key areas for technology development as needed to reach the major scientific goals in the next decades (Table 1). We defined short-, mid-, and long-term recommendations for ESA in Table 1 (S, M, L; respectively) for each major scientific theme. The recommendations include participation on international missions, as well as technology development required for scientific progress. Short-term progress can be made in answering fundamental scientific questions about the Moon by leveraging existing technological

capabilities and partnerships. Plans for mid- to long-term technology development, including the capabilities listed above, will enable the achievement of higher-level scientific goals. Many of the scientific goals can be accomplished via remote sensing and robotic missions. However, detailed geological studies and refined selection of lunar samples will benefit significantly from the involvement of astronauts, either via tele-robotics in the lunar vicinity or on the lunar surface [9,10]. A station or Gateway in the lunar vicinity could serve as a platform for lunar surface operations, including remote collection and transfer of lunar samples.

Testbed for Destinations Beyond the Moon: A human presence on the Moon will not only allow the dexterous and dynamic collection of samples and measurements for investigation of scientific questions in real-time, but also provide a valuable testbed for technologies that enable exploration of more distant destinations. For example, precision landing and automated hazard avoidance, tele-robotics, and surface mobility improvements can be applied to missions to all solid planetary bodies. Development of cryogenic sample return could be used on missions to comets and icy moons in the outer Solar System. ISRU and lunar construction technologies will serve as a basis for longer term habitation of the Moon and foster a lunar economy to support further research and development [11-13]. Moreover, technological developments in robotics, communications, resource use, and other technologies will feed back to terrestrial applications.

References: [1] ISECG (2017) Global Exploration Roadmap. [2] NRC (2007) Scientific Context for Exploration of the Moon. [3] LEAG (2017) Advancing the Science of the Moon. [4] Crawford et al. (2012) PSS 74, 3-14. [5] Pieters et al. (2018) Transformative Lunar Science, SSERVI. [6] ESA (2019a) ESA Strategy for Science at the Moon. [7] ESA (2019b) ESA Space Resources Strategy. [8] Carter et al. (2021) White Paper #3: Planetary Science https://esamultimedia.esa.int/docs/HRE/03_PhysicalSciences_Planetary_Science.pdf. [9] ISECG (2017) Scientific opportunities enabled by human exploration beyond low-earth orbit. [10] Sauro et al. (2023) Acta Astronautica 204, 222-238. [11] Duke et al. (2006) Development of the Moon, Rev. Min. Geochem. 60, 597-656. [12] Crawford (2016) Space Policy 37, 58-61. [13] Spudis (2016) The Value of the Moon: How to Explore, Live and Prosper in Space Using the Moon's Resources, Smithsonian Books.

Table 1. Outstanding science questions [e.g., 1-7] with highlighted critical experiments, relevance for human/robotic exploration, and recommendations for ESA activities for short (S), mid- (M), and long (L) term strategic planning

exploration, and recommend Open questions	dations for ESA activitie Experiments	es for short (S), mid- (M), and Relevance	long (L) term strategic planning. Recommendations for ESA
Bombardment in the inner	In situ and/or sample	Present bombardment: Assess	(S) Participation in Chang'e-5 and Chang'e-
Solar System	return age analyses for (1) key lunar basins	present hazard for the Earth and Moon	6 sample analyses (S) Develop/support implementation of
Ancient: Nature of bombardment	(including South Pole	Absolute chronology for the	seismic/geophysical payloads
on the early Moon? Relation to	Aitken), (2) young	Solar System: Interpretation of	(M) In situ analysis payload development,
the emergence of life on Earth?	basalts, (3) key young	geological history of terrestrial	sample return mission or payload
Mananaganti	craters	planetary bodies, feeds into agency strategy and mission	development for Argonaut
More recent: Understand the nature of	Remote observations of	planning	(M-L) At least one in-situ age or sample return mission to a key geological unit
bombardment in the last 1 Ga?	newly formed craters, and	Technology driver: Development	(L) Gateway-based, human/robotic sample
00.110.110.110.110.110.110.110.110.110.	installation of seismic	of communications, landing,	return concepts
Present: Present flux?	networks to measure their	payload, and surface operations	•
	frequency and magnitude	capability	
Lunar interior, seismicity,	Globally distributed	Evaluate present hazard for	(S) Develop/support payloads with
tectonics	seismic and heat flow	surface operations/construction	geophysical instrumentation
Formation/ differentiation?	network; expanded retroreflector network	To shu s lo ou duit sou Doveloum out	(S) Support placement of geophysical
Origin of asymmetric	retroreflector network	<u>Technology driver:</u> Development of communications, landing,	network nodes at mission of opportunity sites
thermal/volcanic evolution?		payload, and surface operations	(L) Deploy geophysical network
Current seismicity?		capability	.,
Geological processes as	Sample return and	Resource assessment for	(S) Chang'e sample analysis participation
revealed by the Moon	diverse in situ	materials applicable to ISRU,	(S) Develop/support basic
Formation/molection of annual	measurements	construction, and other surface activities	mineralogical/geochemical packages on
Formation/evolution of crust: Crustal homogeneity (LMO,	Orbital compositional	activities	missions of opportunity (S) Support additional studies of landing
KREEP etc.)?	observations at higher	Scientific input for agency	sites for agency-directed use during
Haller etc.).	resolutions and extended	strategy and mission planning	missions of opportunity
Volcanism: How recent? Role of	wavelengths		(M) Remote observation of lunar surface at
volatiles? Thermal evolution?		<u>Technology driver:</u> Development	extended thermal infrared wavelengths
Interior diversity? Resources?	Regional seismic networks	of communications, landing, payload, and surface operations	(M) Support/develop follow-on mission for NASA's Lunar Reconnaissance Orbiter
Impact cratering: Processes as		capability	(M) In situ analysis payload and/or sample
revealed on a body with less	Change-detection		return development
active geology than the Earth?			(L) Gateway-based sample return concepts (L) Collaborate with CNSA on ILRS
Water and other volatiles	Orbital observations and	Resource assessment for	(S/M) PROSPECT on CLPS and other
O-i-i2 Di-t-il4:2	ground truth of nature,	materials applicable to ISRU,	CLPS opportunities
Origins? Distribution? Abundances? Compositions?	distribution, extent, composition of water and	construction, and other surface activities	(M) Support delivery of analytical/technical payloads to polar regions
Processes?	volatiles	activities	(M) Orbital mapping of H ₂ O ice and other
Lunar volatile cycles ?	volucios	<u>Technology driver:</u> Development	species at higher resolution
Resources?	Cores to investigate	of communications, landing,	(M) ESA Argonaut payloads
	vertical distribution and	payload, and surface operations	(L) Cryogenic sample return; multiple drill
	nature	capability; Development of	cores
	Cryogenic sample return	ice/volatile handling and storage	(L) Gateway-based sample return concepts (L) Collaborate with CNSA on ILRS
Regolith	Sample return, regolith	Resource assessment for	(S) Chang'e sample analysis participation
	stratigraphy/deep drill	materials applicable to ISRU,	(S) Participation in ANGSA
Formation and weathering	core, samples of	construction, etc.	(S) Develop/support placement of basic
processes? History of the Sun	paleoregolith; swirls	<u>Technology driver:</u> Development	mineralogical/geochemical/geotechnical
and Solar System? Resources?		of communications, landing,	packages on missions of opportunity
		payload, and surface operations	(M) ESA Argonaut payloads
		capability, and deep-drilling technologies	(M/L) Return of cores and paleoregolith (L) Gateway-based concepts
Atmosphere, dust, and plasma	UV and mass	Assess hazards for future robotic	(S) Develop/support placement of plasma,
environment	spectrometers, material	and human exploration	neutrals, magnetic and electric fields
Exosphere formation/evolution?	adhesion experiments,		and dust particles instruments
Dust levitation and transport?	Langmuir probes		(M-L) Deploy a global network of long
Sources/migration hydroxyl and water? Changes due to activities?			term monitoring stations
Moon as a platform	LF radio-antennas,	Prepare for long-term human	(S) Deploy laser reflectors
Astronomy, astrophysics,	optical/IR telescopes,	habitation of the Moon and	(M-L) Deploy LF radio antennae, cosmic
fundamental physics,	laser retroreflectors, CR	human missions to Mars and	ray detectors, Earth-observing
life sciences and astrobiology	and radiation detectors;	beyond	instruments, life sciences experiments
	environmental effects on		(L) Gateway-based, human/robotic
	humans		concepts; habitation studies