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Introduction:  To determine the evolution of 

regolith through erosive processes and for the 

assessment of possible landing site hazards, information 

on the distribution and properties of rocks on the lunar 

surface is crucial [1,2,3]. Currently, high-resolution 

images of NASA’s Lunar Reconnaissance Orbiter 

(LROC) Narrow Angle Camera (NAC) [4] are the best 

source available to detect individual boulders. With 

more than 1.6 million images of which most weren’t 

used in scientific studies yet, an automated detection of 

lunar boulders would allow a much faster and easier 

analysis of unmapped regions of interest [e.g. 5]. 

Methods: Due to the latest improvements in the 

field of deep learning and computer vision, detecting 

objects in images can be automated. The goal of our 

study is to i) automatically detect boulders on the lunar 

surface and ii) extract physical/geological information 

based on models [e.g. 1]. We are implementing a Mask 

R-CNN model based on a preexisting architecture 

written in Python using the Keras library and a 

TensorFlow backend [6]. To train the model, we created 

256x256 pixel cutouts of calibrated LROC NAC 

images. The cutouts were visually inspected to access 

the geologic context and all visible rocks larger than 2 

m were mapped with polygons. This process led to 

much better detections of rocks compared to training 

with existing rock databases using ellipses. After 

detection, we model the reflectance profile across the 

boulder. The expected shape of the reflectance profile is 

provided by simulated images of boulders based on 

topographic diffusion modelling (Fig. 4) [1]. With this 

model, we can get an estimate of the height of the rock 

and the height of its debris apron (fillet). This reveals 

information about the surface exposure age and material 

strength of the boulder [1]. 

Results: The trained model is able for a given 

LROC NAC image cutout to detect boulders by 

delineating a mask around the illuminated part (Fig. 1). 

These predicted masks usually match well with labelled 

shape (Fig. 2a). False Positives (FP) can be caused by 

the rim topography of craters (Fig. 2b) and by small 

areas of the surface of higher reflectance without 

topographic relief. Small rocks with a reflectance 

similar to the background, some of which might 

represent highly abraded rocks/mounds are the main 

reason for False Negatives (FN) (Fig. 2c). 

The model currently achieves average precisions 

(AP) between 71 % and 35 % for the detected masks 

(Fig. 3). These values depend on the Intersection-over-

Union (IOU) threshold. The precisions in dependence of 

the recalls for different IOU thresholds are shown in Fig. 

3. As the model is still in development, these results are 

preliminary. 

In a second step, we can extract positions, sizes 

(length and illuminated area) and shapes for the detected 

rocks, as well as the reflectance profile in the direction 

of the sunlight.  

As of now, to model the profile, we are combining a 

so-called “Ricker wavelet” with a gaussian function. In 

most of the cases, the fitting of the reflectance profile 

already matches well with the smoothed measured 

profile (Fig. 5). This demonstrates that in addition to 

rocks, their debris aprons can be detected and 

characterized with orbital data in a reproducible way.  

Figure 1: Example of detections of the model (marked 

in red) for a subframe of M144931504LE. 

 

Conclusions: We are developing a Mask R-CNN 

model that can detect rocks on LROC NAC cutouts. The 

model can for example be used for the automated 

creation of size-frequency distribution and thus age 

maps [7]. As it is still in development further 

improvements can be achieved. We plan to extend the 

dataset to get more training data for the model. By using 

more regions on the Moon, the quality of the data would 

be improved leading to a better generalization.  

The reflectance profiles of the detected rocks can be 

fitted. The fit can then reveal information about the rock 

age and strength [1]. 
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Figure 2: Examples of the results (labels marked in green, detections marked in red): (a) True Positives (TP), (b) 

False Positives (FP) and (c) False Negatives (FN).  
 

 
Figure 3: Precision-recall curve for the model 

for different IOU thresholds. The marked points 

state the maximum area under the curve. 

 

 
Figure 4: The maximum reflectance of the fillet is proportional 

to the rock diffusivity (green arrow) and the width of the fillet is 

proportional to the rock age (red arrow). 

  

 
Figure 5: Example of the analysis of a detected rock. Left: the cutout of the rock with the sunlight direction, middle: 

the corresponding reflectance profile, right: the smoothed profile (blue) with the calculated fit (orange). 
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