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Introduction:  Lunar mare deposits cover ~ 16% of 

the lunar surface, which is mainly located in the nearside 

[1]. These mare basalts are clearly identifiable by their 

dark colors and smooth surfaces in the optical images. 

Surface mare deposits indicate local volcanic activities, 

which provide significant constraints for the global 

thermal evolution of the Moon [e.g., 2].  

Impact melts, on the other hand, are generated by 

exogenic impact processes [e.g., 3], which record the 

bombardment history of the planet. Although the impact 

melt and mare basalt have strikingly different origins, 

distinguishing them has found to be difficult from 

optical image due to similar surface roughness and 

textures [4]. Specially, mare basalts are preferentially 

erupted in large impact basins with reduced crustal 

thickness [5], implying spatial co-existence of these two 

types of geologic units.  

Due to this intrinsic similarity, identifying the two 

units altogether from remote sensing optical 

observations is potentially more feasible than 

distinguishing them from each other. For the Moon, 

Nelson et al. [6] provide a global mare boundary map 

by visually identifying boundaries in the LROC Wide 

Angle Camera (WAC) images and Clementine UVVIS 

color ratio mineral map. But there is not yet an impact 

melt database available for the global lunar surface.  

In this work, we take the advantage of the existing 

mare boundary map [6] to train a convolutional neural 

network (CNN), based on LROC WAC images. The 

network is expected to learn the characteristics of mare 

basalts in the optical images, and thus has the potential 

to detect lunar geologic units with similar optical 

characteristics. Our trained network discovers more 

mare-like areas than the input mare basalts, which we 

infer to be mainly impact melts.  

Data and Training:  We use the global mosaic of 

LROC WAC images with a spatial resolution of 100 m 

per pixel [7] as input data. The global WAC mosaic is 

cropped to square images of 512×512 pixels. The lunar 

mare boundary map [6] is projected to the same equal-

sized squares as the ground truth. We denote Class 1 to 

represent a basaltic pixel, while Class 0 represents a 

non-basaltic pixel. About 6,500 cropped WAC images 

with ground truth are combined, among which we select 

80% to train the network and the rest are used to test the 

performance of our trained model.   

We implement a customized UNET architecture [8] 

based on deep learning for this detection task. This 

network consists of two main paths: the first path 

extracts features from original images; and the 

following second path outputs the predictions with the 

same size as the original images from expanding the 

extracted features. After training, for each pixel the 

network yields a classification result from 0 to 1, which 

can be directly compared with the input ground-truth 

labels.  

Our trained network has achieved a high pixel 

classification accuracy (the ratio of the number of 

correctly predicted pixels to all the pixels) of 96%, 

indicating that the network has learned the optical 

Fig. 1. Global map 

of detected mare 

and melt on the 

Moon. Blue color: 

Ground-truth mare 

basalt units from 

[6]; Red color: Our 

detected mare and 

melt units. Yellow 

boxes outline the 

locations of Fig. 2.  
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characteristics of lunar mare basalts as provided by [6]. 

Our MIoU (Mean Intersection over Union), defined as 

the ratio of the intersection and union of two sets of 

ground truth and prediction, is 78%, as we detect more 

mare-like areas than the input and the false positive 

detection greatly reduces the intersection of the ground 

truth and prediction sets. Nevertheless, the false positive 

detection is expected because we do not use mineral 

maps in the training. Furthermore, the false positives are 

actually newly discovered mare-like areas that turn out 

to be the major benefit of this study (see next section).  

Results and Discussions:  In total, we identify a 

mare-like surface area of about 6,910,000 km2 (red areas 

in Fig. 1), corresponding to ~ 18% of the lunar surface 

area. Our detected area is visibly larger than the 16% 

provided by [6] (blue areas). This is mainly because we 

do not use mineral maps for training, and thus do not 

require mineral content characteristics of mare basalts 

to be satisfied. But the benefit of this method is that we 

detect new mare-like areas, which bear similarities in 

the optical characteristics with mare basalts. By visually 

inspecting the images with newly discovered mare-like 

areas, we find that the main feature for our detection is 

the surface smoothness and the boundaries are mostly 

placed between smooth and rough surfaces.  

Comparing our newly discovered mare-like surface 

areas (red areas in Fig. 1) with the ground-truth mare 

basalt areas from [6] (blue areas) suggest that we have 

classified more areas surrounding the ground-truth areas 

to be mare-like. These new areas are likely mare basalts, 

which we will further confirm by zooming in the details 

of these areas.  

More intriguing new detection are plenty of small 

areas scattered over the lunar highlands. Considering 

the different smoothness for lunar geologic features [9], 

the newly discovered smooth areas are most likely to be 

impact melts and cryptomare. Fig. 2a shows a detailed 

image of newly identified mare-like areas in a region to 

the west of Oceanus Procellarum (see Fig. 1). These 

identified mare-like areas are tightly associated with 

crater floors, implying that they are induced by impact 

processes. Although smooth areas in large craters are 

likely to be post-impact mare deposits (e.g., for the 218-

km-diameter Landau crater indicated by a yellow circle), 

the areas within relatively small craters are most 

plausible to be impact melts because mare deposits are 

unlikely associated with small craters, in particular on 

farside highlands. We will compare with multispectral 

data to further study the composition and origin of these 

smooth features.  

Fig. 2b shows newly discovered mare-like areas in 

the Schiller-Schickard region where the most extensive 

cryptomare on the Moon has been proposed [10]. In this 

region, cryptomare basalts facilitated by the ancient 

Schiller-Schickard basin (yellow circle) are super-

imposed by subsequent Orientale ejecta deposits [e.g., 

11]. But the existence of underlying ancient cryptomare 

basalts has been confirmed by dark-halo craters. 

Therefore, our technique also has the potential to detect 

cryptomare deposits due to their smooth surface.  

Conclusions:  This study combines the existing 

mare basalt map for the Moon and the modern deep 

learning technique to automatically detect mare-like 

geologic units with smooth surfaces. Our trained 

network is able to detect new mare-like areas that 

potentially correspond to impact melts and cryptomare 

deposits. We will compare with multispectral data to 

further confirm their composition and origin. Our study 

provides a viable way to train a neural network to 

automatize planetary geologic feature detection, which 

may be applied to other planets and for other remote 

sensing datasets.  

 
Acknowledgments: This work is supported by the 

Science and Technology Development Fund, Macau 

(0020/2021/A1) and NSFC 12173106. 

References: [1] Head & Wilson (1992) GCA, 56, 2155–

2175. [2] Laneuville et al. (2013) JGR, 118, 1435–1452. 

[3] Cintala et al. (1998) M&PS, 33, 889–912. [4] Neal 

et al. (2015) GCA, 148, 62–80. [5] Taguchi et al. (2017) 

JGR, 122, 1505–1521. [6] Nelson et al. (2014) 45th 

LPSC, Abstract #2861. [7] Speyerer (2011) 42nd LPSC, 

Abstract #2387. [8] Ronneberger et al. (2015) 

arXiv:1505.04597. [9] Kreslavsky et al. (2013) Icarus, 

226, 52–66. [10] Whitten & Head (2015) Icarus, 247, 

150–171. [11] Blewett (1995) JGR, 100, 16959–16977. 

Fig. 2. Newly 

discovered melt 

and mare area (red 

boundaries). Blue 

area is the ground-

truth mare basalt 

units from [6].  

We infer (a) to be 

mainly impact 

melts, and (b) to 

be cryptomares. 

Yellow circles 

indicate the 

Landau crater and 

Schiller-Schickard 

crater. The 

locations of the 

two panels are 

shown in Fig. 1.  
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