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Introduction: Two Raman instruments were 

recently deployed to the surface of Mars on the Mars 

2020’s Perseverance Rover. The Scanning Habitable 

Environments with Raman and Luminescence for 

Organics & Chemicals (SHERLOC) utilizes deep 

ultraviolet resonance for the analysis of organics, 

chemicals, and surface mineralogy [1]. SuperCam 

analyzes surface materials with a 532 nm laser from 

long ranges [2]. A third Raman spectrometer, the 

Raman Laser Spectrometer (RLS) on the ExoMars 

mission, will arrive years from now. It will use a 532 nm 

laser to probe powdered samples obtained by a drill [3]. 

For Raman spectrometers with large spot sizes, 

multiple mineral phases can be interrogated in the 

collection of a single Raman spectrum. However, 

currently there is not a reliable methodology for 

quantifying mineral species in mixture due to non-linear 

mixing effects in Raman Spectroscopy (Figure 1). 

Here, we report machine learning multivariate unmixing 

models and introduce Raman scattering coefficients, 

which are numerical metrics associated with specific 

Raman features for the quantification of common rock-

forming minerals. Utilizing these models and Raman 

scattering coefficients simultaneously allows users to 

quantify mineral contents in mixtures using two 

independent methods. 

Background: Quantitative relationships between 

peak areas and mineral abundances are obscured by 

many complicating factors in Raman spectroscopy: the 

exciting laser wavelength, the Raman cross-section of 

the minerals (dependent on the strength of covalent 

bonding and polarizability of the molecule), crystal 

orientation relative to laser polarization, and long-range 

chemical and structural ordering in the crystal lattices 

[4]. Even if the Raman laser interrogates a broad area to 

avoid crystal orientation effects, variations in Raman 

cross-sections of different mineral species prevent 

quantitative assessment of mineral abundances in 

mixtures. Until a theoretical model for unmixing of 

Raman data is developed, empirical methods such as 

machine learning multivariate analysis and/or use of 

Raman scattering coefficients are needed. 

Due to the complexities regarding Raman mineral 

quantification in the context of planetary surfaces, a 

combination of utilizing the collection of narrow-beam 

spectra and a point-count method [4] can theoretically 

solve this problem. However, despite the use of spectral 

rasters and point-counting, the ubiquity of mixed-phase 

spectra presents difficulties for quantification. The 1.5–

5.0 mm beam size of SuperCam results in mixed-

mineral spectra [2]. This can also be true for the smaller 

~100 µm beam size of SHERLOC [1]. 

Methods: We quantified the Raman scattering 

coefficients of 181 samples (Figure 2) and used 37 of 

those pure mineral samples to develop machine learning 

multivariate analysis models. Electron microprobe 

chemical analyses were used to calculate the density of 

each mineral. This allowed mixtures to be made in 

volume percentages, analogous to mineral abundances 

reported from remote sensing measurements. Samples 

were crushed, handpicked for purity, and sieved. 

Spectra of end-members and mixtures were acquired 

on a Bruker Optics BRAVO Raman spectrometer using 

dual laser excitation and their fluorescence mitigation 

strategy employing successive laser heating [5]. Three 

scans/spectra were obtained using an integration time of 

10 seconds covering a wavenumber range of 300-3200 

cm-1. 

Machine Learning Multivariate Analysis: A total 

of 640 binary mineral mixtures were made from 

pairings of 37 mineral samples. Samples were weighed 

into ratios of 50:50, 20:80, and 95:5 volume % 

depending on the Raman cross-sections of the paired 

phases. Mixtures were customized for each pair to 

ensure that each phase would have characteristic bands 

with sufficient peak areas for multivariate analyses. 

Partial least squares (PLS) [6], a type of machine 

learning multivariate analysis, was utilized in building 

models for the prediction of mineral abundances in each 

mixture. Multivariate model performance is mineral-

dependent. We found that depending on the mineral 

species of interest, the cross-validated root mean square 

error can vary (e.g., 3.7–15.5 volume%). These errors 

are small enough to be promising for evaluating mineral 

mixtures in field and extraterrestrial applications. 

 
Figure 1. Raman spectra of three binary mixtures consisting 

of forsterite, calcite, labradorite, and diopside that exhibit non-

linear mixing behavior. 
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Raman Scattering Coefficients: Raman scattering 

coefficients were calculated by making 95:5 volume % 

mixtures of the 181 individual minerals with diamond 

powder as a reference material. Synthetic diamond was 

chosen as a reference for the Raman scattering 

coefficients because it has a simple spectrum with a 

strong peak at 1332 cm-1 that does not overlap with 

common rock-forming minerals. Peak areas for 

diagnostic features in each mineral species’ spectrum 

were compared to those of the prominent diamond peak. 

The ratio of those areas is termed a “Raman scattering 

coefficient” (Equation 1). A normalization parameter is 

included within the equation to account for the volume 

percentage of diamond given that different proportions 

could be chosen when making a diamond-mineral 

mixture. 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = (
𝑚𝑖𝑛𝑒𝑟𝑎𝑙 𝑎𝑟𝑒𝑎

𝑑𝑖𝑎𝑚𝑜𝑛𝑑 𝑎𝑟𝑒𝑎
) × (

%𝑑𝑖𝑎𝑚𝑜𝑛𝑑

100
)    𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏 

We plan to test the performance of the Raman 

scattering coefficients in unmixing unseen data using 

the binary mineral mixture training set from the 

multivariate analysis models. 

Applications: This project is of importance to 

terrestrial field work and laboratory analyses of rocks 

and mixtures. Additionally, workers can utilize these 

methods for in situ analyses of Mars. 

This work holistically addresses the 

problem of mineral abundance 

quantification for mixtures using 

Raman spectroscopy. In the future, 

we anticipate creating specialized 

multivariate analysis models 

customized to the mineralogy of 

specific geologic units. For example, 

for the Perseverance Rover 

landing site, we will develop 

models for specific geologic 

units like Máaz and Séítah in 

Jezero Crater (e.g., olivine, 

pyroxene, carbonate, and 

hematite) [7]. We expect that 

this change will improve model 

accuracy further. Through this 

work, we lay the foundation for 

quantifying the relevant 

mineralogy using two 

independent methods.  

Conclusions: Both Raman 

scattering coefficients and 

machine learning multivariate 

analysis can be used to account 

for non-linear mixing effects 

and quantify mineral 

abundances using Raman 

spectroscopy. The pros and 

cons of the two Raman 

quantification techniques are summarized in Figure 3. 

Different scenarios may favor the use of one of these 

methods over the other. We expect the most confident 

and accurate prediction results when utilizing the two 

quantitative solutions simultaneously. 

The chief liability of these techniques lies in the lack 

of available well-characterized individual pure minerals 

suitable for making mixtures, and in the labor-intensive 

nature of creating those mixtures. Availability of 

mixtures is of paramount importance in creating the 

fundamental data needed to improve the accuracy of 

these techniques. 
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Figure 2. Histogram of all 181 pure mineral samples organized by Dana Class. The 37 mineral 

samples utilized in the machine learning multivariate analysis models include hematite, 

ilmenite, spinel, magnetite, calcite, magnesite, siderite, aragonite, anhydrite, gypsum, rozenite, 

melanterite, alunite, jarosite, garnet, two forsterites, cordierite, clinopyroxene, orthopyroxene, 

enstatite, diopside, augite, amphibole, tremolite, ripidolite, serpentine, phlogopite, 

montmorillonite, nontronite, saponite, quartz, potassium feldspar, albite, labradorite, 

bytownite, and chabazite. 

 

 
Figure 3. Pros (+, green) and cons (–, red) of the Raman scattering coefficients and the 

multivariate analysis technique. 
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