MINI-RF S-BAND RADAR OBS ERVATIONS OF THE MOON AS A FUNCTION OF LOCAL INCIDENCE ANGLE. C. I. Fassett¹, E. G. Rivera-Valentín¹, G. W. Patterson¹, J. T. S. Cahill¹, G. A. Morgan², C. D. Neish^{2,3}, A. K. Virkki⁴, P. A. Taylor⁵, M. C. Nolan⁶, M. Slade⁷, S. S. Bhiravarasu⁸. ¹JHU-Applied Physics Laboratory (caleb.fassett@jhuapl.edu), ²PSI, ³Dept. of Earth Sciences, Univ. of Western Ontario, ⁴University of Helsinki, ⁵NRAO & Green Bank Observatory, ⁶LPL, University of Arizona, ⁷NASA JPL/Caltech, ⁸Space Applications Centre, ISRO, Ahmedabad, India. **Introduction:** The Miniature Radio Frequency (Mini-RF) instrument on Lunar Reconnaissance Orbiter (LRO) is a Synthetic Aperture Radar designed in a hybrid dual-polarimetric architecture that transmits a circularly polarized signal to the lunar surface and receives the horizontal and vertical linear polarizations [1]. Monostatic radar data was collected in this mode until 26 Dec. 2010, when the transmitter ceased to operate. Since 2011, bistatic observations in S-Bandand X-Band have been conducted by transmitting from ground-based facilities and receiving scattered light from the lunar surface onboard LRO [2]. The received radar signal from Mini-RF is represented using the four Stokes parameters (S₁₋₄), which can be combined to derive metrics for lunar surface properties. Returned radar power and polarimetry are both dependent on the local incidence angle (i), where i is the angle between the radar illumination and a vector drawn perpendicular to the target's surface (surface normal vector) taking topography into account $(i=0^\circ)$: direct illumination; $i=90^\circ$: grazing). At low incidence, specular returns dominate, whereas diffuse scattering becomes more important at high incidence angles [e.g., 3-5]. Although the importance of this effect has been recognized in the Mini-RF data [6-8], a global analysis was not easily accessible because a backplane with i was not available for the monostatic data. Here, we examine the Mini-RF S-band behavior as a function of local incidence angle after registering the monostatic data to a SLDEM [9] (LOLA at high latitudes) topographic reference frame. We also make a similar calculation for the Mini-RF S-band bistatic data, whose processing chain [10] already provides a local incidence angle of each pixel. **Methods:** The PDS-released Mini-RF monostatic dataset is imperfectly tied to SLDEM for two reasons. First, the data were projected onto a spherical Moon, so that pixels were not orthorectified [e.g., 7]. Second, and more challenging, is that there are known positional offsets along-track [11] that appear to be traced to the VEXCEL processing pipeline. For non-polar data, we addressed these is sues with a processing chain in USGS ISIS and python/numpy by (i) taking the Level 1 (unmap-projected) dataset and attaching local SLDEM-derived topography as a shape model with *spiceinit*; (ii) calculating *i* given the monostatic radar geometry with phocube; (iii) creating an initial guess of a synthetic S_1 based on a model for the empirical relationship between S_1 and i, using fx; (iv) applying a cross-correlation image registration algorithm [12] to calculate a linear shift (in image space, not map space) between the observed S_1 and synthetic S_1 ; (v) shifting the data by the calculated offset and then map-projecting and orthorectifying S_1 - S_4 , and attaching an i backplane. This process worked for 98% of the global, non-polar data. A portion of the monostatic dataset near the poles already had been seleno-referenced [e.g., 13], so for that data, step iii was replaced by tying S_1 to existing controlled S_1 mosaics rather than a model of S_1 . We binned the Mini-RF data as a function of local incidence angle into bins of 25000 pixels for each collect. Because the geometry of Mini-RF monostatic data acquisitions were typically fixed relative to the surface, the distribution of data is centered on 49°. For the Mini-RF bistatic data, greater variability exists in the acquisition geometry, so there is a broader range of incidence angles. S₁ was normalized based on the median of the given collect to 44-54° for the monostatic data and to 35-63° for the bistatic data. Observations and Analysis: Figures 1a and 1c illustrate the relationship between local incidence angle i and normalized S_1 . The observed increase in S_1 in the Mini-RF dataset appears generally consistent with expectations from ground-based observations [3-4]. Received power has an approximately $(\cos(i))^n$ dependence for $i \ge 35^\circ$, with n < 1-3, and a power-law dependence in the specular regime below $\sim 35^\circ$. Differences between the behavior of the monostatic and bistatic data at high incidence (>60°) may be because of (a) the effective noise floor of the monostatic data, and (b) the non-exclusion of areas of true radar shadow in bistatic data, which become increasingly common at high incidence angles. There is also a strong correlation seen in monostatic and bistatic data between local incidence and CPR (Fig. 1b/d). This is likely because at low incidence angles single bounces and low CPR (trending to ~0 in the limit), are favored. The occasional higher values seen at low incidence, especially in the monostatic data, may be a result of very rough and/or geometrically complex surfaces, or could be an uncorrected instrumental effect (leakage between polarization channels). At more grazing incidence angles multiple bounces and higher CPR are observed (trending to \sim 1). The very strong influence of local incidence angle on CPR means that geologic interpretations with it need to consider topography carefully, as has been emphasized in the past [5-8]. **References:** [1] Nozette, S. et al. (2010), *Space Sci. Rev. 150*, 285–302. [2] Patterson, G.W. et al. (2017) *Icarus*, 283, 2–19. [3] Hagfors, T. (1970), *Radio Sci.*, 5, 189–227. [4] Thompson, T. W. et al. (2011), *JGR.*, 116, 10.1029/2009JE003368. [5] Fa, W. et al. (2011), *JGR*, *116*, 10.1029/2010JE003649. [6] Fa, W. and Cai, Y. (2013), *JGR*, *118*, 1582–1608. [7] Eke, V.R. et al. (2014), *Icarus*, *241*, 66–78. [8] Virkki, A.K. & Bhiravarasu, S.S. (2019), *JGR*, *124*, 3025–3040. [9] Barker, M.K. et al. (2016), *Icarus*, *273*, 346–355. [10] Turner, F.S. et al. (2019), *49th Planetary Data Wkshp*, 7075. [11] Harris, C.P. et al. (2022), *LPSC 53*, 2856. [12] https://github.com/keflavich/image_registration. [13] Kirk R. L. et al. (2013), *LPSC 44*, 2920. Figure 1. The observed median S_1 (total power, normalized) and CPR for (a and b) monostatic and (c and d) bistatic Mini-RF observations. The underlying dataset are calculated medians in $(i, S_{1-normalized})$ or (i, CPR) bins of 25000 pixels in each collect; the data are then combined in the 2d histograms that are shown. There is limited monostatic data at angles below $\sim 20^\circ$ or above $\sim 80^\circ$ because of the nominal observation geometry of the monostatic data at 49° combined with the topographic slope distribution on the Moon.