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Introduction: The Miniature Radio Frequency 

(Mini-RF) instrument on Lunar Reconnaissance Orbiter 
(LRO) is a Synthetic Aperture Radar designed in a 
hybrid dual-polarimetric architecture that transmits a 
circularly polarized signal to the lunar surface and 
receives the horizontal and vertical linear polarizations 
[1]. Monostatic radar data was collected in this mode 
until 26 Dec. 2010, when the transmitter ceased to 
operate. Since 2011, bistatic observations in S-Band and 
X-Band have been conducted by transmitting from 
ground-based facilities and receiving scattered light 
from the lunar surface onboard LRO [2]. The received 
radar signal from Mini-RF is represented using the four 
Stokes parameters (S1-4), which can be combined to 
derive metrics for lunar surface properties.  

Returned radar power and polarimetry are both 
dependent on the local incidence angle (i), where i is the 
angle between the radar illumination and a vector drawn 
perpendicular to the target's surface (surface normal 
vector) taking topography into account (i=0°: direct 
illumination; i=90°: grazing). At low incidence, 
specular returns dominate, whereas diffuse scattering 
becomes more important at high incidence angles [e.g., 
3-5]. Although the importance of this effect has been 
recognized in the Mini-RF data [6-8], a global analysis 
was not easily accessible because a backplane with i was 
not available for the monostatic data.  

Here, we examine the Mini-RF S-band behavior as 
a function of local incidence angle after registering the 
monostatic data to a SLDEM [9] (LOLA at high 
latitudes) topographic reference frame. We also make a 
similar calculation for the Mini-RF S-band bistatic data, 
whose processing chain [10] already provides a local 
incidence angle of each pixel. 

Methods: The PDS-released Mini-RF monostatic 
dataset is imperfectly tied to SLDEM for two reasons. 
First, the data were projected onto a spherical Moon, so 
that pixels were not orthorectified [e.g., 7]. Second, and 
more challenging, is that there are known positional 
offsets along-track [11] that appear to be traced to the 
VEXCEL processing pipeline. For non-polar data, we 
addressed these issues with a processing chain in USGS 
ISIS and python/numpy by (i) taking the Level 1 (un-
map-projected) dataset and attaching local SLDEM-
derived topography as a shape model with spiceinit; (ii) 
calculating i given the monostatic radar geometry with 

phocube; (iii) creating an initial guess of a synthetic S1 
based on a model for the empirical relationship between 
S1 and i, using fx; (iv) applying a cross-correlation 
image registration algorithm [12] to calculate a linear 
shift (in image space, not map space) between the 
observed S1 and synthetic S1; (v) shifting the data by the 
calculated offset and then map-projecting and 
orthorectifying S1-S4, and attaching an i backplane. This 
process worked for 98% of the global, non-polar data. 
A portion of the monostatic dataset near the poles 
already had been seleno-referenced [e.g., 13], so for that 
data, step iii was replaced by tying S1 to existing 
controlled S1 mosaics rather than a model of S1.  

We binned the Mini-RF data as a function of local 
incidence angle into bins of 25000 pixels for each 
collect. Because the geometry of Mini-RF monostatic 
data acquisitions were typically fixed relative to the 
surface, the distribution of data is centered on 49°. For 
the Mini-RF bistatic data, greater variability exists in the 
acquisition geometry, so there is a broader range of 
incidence angles. S1 was normalized based on the 
median of the given collect to 44-54° for the monostatic 
data and to 35-63° for the bistatic data.  

Observations and Analysis: Figures 1a and 1c 
illustrate the relationship between local incidence angle 
i and normalized S1. The observed increase in S1 in the 
Mini-RF dataset appears generally consistent with 
expectations from ground-based observations [3-4]. 
Received power has an approximately (cos(i))n 
dependence for i≳35°, with n~1–3, and a power-law 
dependence in the specular regime below ~35°. 
Differences between the behavior of the monostatic and 
bistatic data at high incidence (>60°) may be because of 
(a) the effective noise floor of the monostatic data, and 
(b) the non-exclusion of areas of true radar shadow in 
bistatic data, which become increasingly common at 
high incidence angles.  

There is also a strong correlation seen in monostatic 
and bistatic data between local incidence and CPR (Fig. 
1b/d). This is likely because at low incidence angles 
single bounces and low CPR (trending to ~0 in the 
limit), are favored. The occasional higher values seen at 
low incidence, especially in the monostatic data, may be 
a result of very rough and/or geometrically complex 
surfaces, or could be an uncorrected instrumental effect 
(leakage between polarization channels). At more 
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grazing incidence angles multiple bounces and higher 
CPR are observed (trending to ~1). The very strong 
influence of local incidence angle on CPR means that 
geologic interpretations with it need to consider 
topography carefully, as has been emphasized in the 
past [5-8]. 
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Figure 1.  The observed median S1 (total power, normalized) and CPR for (a and b) monostatic and (c and d) 
bistatic Mini-RF observations.  The underlying dataset are calculated medians in (i, S1-normalized) or (i,CPR) bins of 
25000 pixels in each collect; the data are then combined in the 2d histograms that are shown.  There is limited 
monostatic data at angles below ~20° or above ~80° because of the nominal observation geometry of the monostatic 
data at 49° combined with the topographic slope distribution on the Moon.  

1564.pdf54th Lunar and Planetary Science Conference 2023 (LPI Contrib. No. 2806)


