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Introduction: The Miniature Radio Frequency
(Mini-RF) instrumenton Lunar Reconnaissance Orbiter
(LRO) is a Synthetic Aperture Radar designed in a
hybrid dual-polarimetric architecture that transmits a
circularly polarized signal to the lunar surface and
receives the horizontal and vertical linear polarizations
[1]. Monostatic radar data was collected in this mode
until 26 Dec. 2010, when the transmitter ceased to
operate. Since 2011, bistatic observations in S-Bandand
X-Band have been conducted by transmitting from
ground-based facilities and receiving scattered light
from the lunar surface onboard LRO [2]. The receved
radarsignal fromMini-RF is represented using the four
Stokes parameters (Si-4), which can be combined to
derive metrics for lunarsurface properties.

Returned radar power and polarimetry are both
dependenton thelocalincidence angle (), where i is the
angle between theradar illumination and a vector drawn
perpendicular to the target's surface (surface normal
vector) taking topography into account (7=0°: direct
illumination; i=90°: grazing). At low incidence,
specular returns dominate, whereas diffuse scattering
becomes more important at high incidence angles [e.g.,
3-5]. Although the importance of this effect has been
recognized in the Mini-RF data [6-8], a global analysis
was not easily accessible becausea backplane with i was
notavailable forthe monostatic data.

Here, we examine the Mini-RF S-band behavior as
a function oflocal incidence angle after registering the
monostatic data to a SLDEM [9] (LOLA at high
latitudes) topographic reference frame. We also make a
similar calculation forthe Mini-RF S-band bistatic data,
whose processing chain [10] already provides a local
incidence angle ofeach pixel.

Methods: The PDS-released Mini-RF monostatic
dataset is imperfectly tied to SLDEM for two reasons.
First, the data were projected onto a spherical Moon, so
that pixels were not orthorectified [e.g., 7]. Second, and
more challenging, is that there are known positional
offsets along-track [11] that appear to be traced to the
VEXCEL processing pipeline. For non-polar data, we
addressed these issues with a processing chainin USGS
ISIS and python/numpy by (i) taking the Level 1 (un-
map-projected) dataset and attaching local SLDEM-
derived topography as a shape model with spiceinit; (ii)
calculating i given the monostatic radar geometry with

phocube; (iii) creating an initial guess ofa synthetic S;
basedon amodel for the empirical relationship between
S and i, using fx; (iv) applying a cross-correlation
image registration algorithm [12] to calculate a linear
shift (in image space, not map space) between the
observed S, andsynthetic Si; (v) shifting the databy the
calculated offset and then map-projecting and
orthorectifying Si-Ss, and attaching ani backplane. This
process worked for 98% of the global, non-polar data.
A portion of the monostatic dataset near the poles
already hadbeen seleno-referenced[e.g., 13], so for that
data, step iii was replaced by tying S; to existing
controlled S; mosaics rather thana model of S;.

We binned the Mini-RF data as a function of local
incidence angle into bins of 25000 pixels for each
collect. Because the geometry of Mini-RF monostatic
data acquisitions were typically fixed relative to the
surface, the distribution of data is centered on 49°. For
the Mini-RF bistatic data, greater variability exists in the
acquisition geometry, so there is a broader range of
incidence angles. S; was normalized based on the
median ofthe given collect to44-54° for the monostatic
data and to 35-63° for the bistatic data.

Observations and Analysis: Figures la and lc
illustrate the relationship between local incidence angle
i and normalized S,. The observed increase in S; in the
Mini-RF dataset appears generally consistent with
expectations from ground-based observations [3-4].
Received power has an approximately (cos(?))'
dependence for i=35°, with n~1-3, and a power-law
dependence in the specular regime below ~35°.
Differences between the behavior of the monostatic and
bistatic data at high incidence (>60°) may be because of
(a) the effective noise floor of the monostatic data, and
(b) the non-exclusion of areas of true radar shadow in
bistatic data, which become increasingly common at
high incidenceangles.

There is also a strong correlation seen in monostatic
and bistatic data between local incidenceand CPR (Fig.
1b/d). This is likely becauseat low incidence angles
single bounces and low CPR (trending to ~0 in the
limit), are favored. Theoccasional higher values seen at
low incidence, especially in themonostatic data, may be
a result of very rough and/or geometrically complex
surfaces, orcould be anuncorrected instrumental effect
(leakage between polarization channels). At more
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grazing incidence angles multiple bounces and higher
CPR are observed (trending to ~1). The very strong
influence of local incidence angle on CPR means that
geologic interpretations with it need to consider
topography carefully, as has been emphasized in the
past[5-8].
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Figure 1. The observed median S; (total power, normalized) and CPR for (a and b) monostatic and (c and d)
bistatic Mini-RF observations. The underlying datasetare calculated medians in (7, Si-normaiizea) 01 (i, CPR) bins of
25000 pixels in each collect; the dataare then combined in the 2d histograms that are shown. There is limited
monostatic data at angles below ~20° orabove ~80° because ofthe nominal observation geometry ofthemonostatic
data at 49° combined with the topographic slopedistribution on the Moon.
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