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Introduction:  Transverse Aeolian Ridges (TARs) 

[1] are found across the martian surface. Terrestrial 

analogues show that these ridges form perpendicular to 

the direction of prevailing wind, and so provide a 

geomorphological marker for past and present wind 

conditions on Mars [2]. TARs are easily recognized, 

however digitizing them in statistically significant 

numbers can be extremely time consuming (for 

example, to extract direction data). Consequently, we 

developed a deep learning (DL) TAR detection system 

to more rapidly acquire wind direction datasets over 

large geographic areas. Importantly, we used a 

commercial, off-the-shelf (COTS) DL framework rather 

than a bespoke system, to see whether a shareable, 

scalable DL method could be achieved. 

Methods:  We applied the DL tools in ArcGIS Pro 

3.0 to automatically segment TARs in images from the 

High-Resolution Imaging Science Experiment 

(HiRISE) camera [3]. HiRISE captures satellite images 

at a native resolution of 25 cm/pixel making it ideal for 

identifying small features such as TARs.  

An existing dataset of digitized TARs was utilized 

as the training data for this project, using the site at Oxia 

Planum where we have previously studied and digitized 

aeolian features with DL [4]. A small section of HiRISE 

image ESP_037703_1980_RED was selected as the 

training area. This region consists of a wide valley 

containing several thousand TARs. Approximately 

1000 TARs were selected, filtering out those which 

were too small to be easily recognizable, or which 

merged together into larger ripple fields. A size 

threshold of 5 m across the ridge (short axis) was chosen 

as the lower cut off for selected features. 

Several data augmentation procedures were 

implemented to turn these vector shapes into a workable 

DL training dataset. First the HiRISE image was 

progressively down-sampled in 1-meter steps, creating 

a set of images ranging in resolution from 1 to 6 m per 

pixel. When the native 25 cm per pixel image was also 

included this provided 7 versions of the image, where 

the features of interest appeared at various scales 

relative to the size of the pixels.  

The vector shapefiles segmenting the ripples were 

used to export a set of training frames featuring these 

landforms. Most of the training features are orientated 

east-west in the valley, with up to 45 degrees variation 

in places. ArcGIS DL tools are able to export rotated 

versions of these frames, and so a rotation factor of 315 

degrees was used to ensure that there was more variety 

in the orientation of the training features. This allowed 

the network to be more transferable to other regions 

where TARs have different orientations.  

These training frames were used to train a Mask R-

CNN (Region-Based Convolutional Neural Network)  

model based on a Resnet 50 backbone. The model was 

trained for 20 epochs, although it was found to converge 

far faster than this, and so could have been stopped 

sooner.  

Results: The model was found to perform well on 

the areas of ESP_037703_1980_RED which were not 

covered by the training area. It performed similarly for 

other images of Oxia Planum, and Jezero Crater where 

it could be compared to existing classification products 

from our past projects [4, 5].  

 
Figure 1: Classification of TARs in 

ESP_069731_2055__RED. Most large, regular 

features are detected. Some small features are below the 

classification threshold, while some larger features 

show signs of degradation, which prevent them from 

being classified.  

Five images of the Tianwen-1 landing site [6] in 

Utopia Planitia were selected as a new test area. This 

site consists of the flat northern plains of Mars, 

superposed by many isolated TARs. A significantly 

large proportion of these were estimated to be large 

enough to be detected by the network. The images were 

then run through the network, producing a vector dataset 
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showing the distribution of detected TARs. An example 

area is shown in figure 1. 

Mask R-CNN in ArcGIS produces a classification 

product as a vector shapefile, showing the extent of the 

detected features. These are produced in multiple parts 

due to the field of view of the model and are combined 

into single features using the dissolve tool.  

 Most of the features larger than the training set’s 

size threshold (5 m short axis) were detected. However, 

there were some false negatives: these typically 

occurred in locations where bedforms were particularly 

exposed, and had a rugged or windswept appearance, 

resulting in their structure being degraded, and their 

appearance not being pristine.  

This is unsurprising, since few of the features in the 

training dataset had this “weathered” appearance. While 

a human can recognize that they are a more degraded 

form of the same feature, the deep learning system 

presently cannot. The training dataset could be 

expanded to include examples of more degraded 

features, in order to detect this expression of what a 

TAR can look like. A variety of forms where TARs 

interact and intersect to form rectilinear patterns could 

also be included, since such patterns are seen in other 

parts of the planet.  

Some false positives were observed, though these 

were fewer than the false negatives. In some places, 

other linear features were incorrectly classified as 

TARs; for example, some crater rim segments. False 

positives were rare enough as to not be a statistically 

significant fraction of our measured TAR population. 

Therefore, they should have a negligible effect on 

generalized orientation estimates. The false positives 

are also distinct enough that a human user can filter 

them out with relatively little effort if, for example, a 

formal map is to be produced. 

In terms of orientation data, the directionality of 

those degraded features which the DL tool failed to 

identify generally match those of the less degraded 

TARs which were detected. Consequently, the detected 

features provide a sufficiently representative sample of 

all TARs at the site, and further classification was not 

required to generate useful wind direction statistics. 

This is not expected to be true at every site, and so will 

require further testing when the DL is applied more 

widely. 

Wind direction statistics: Since TARs form 

transverse to the prevailing wind direction [2], the 

orientation of their short axis can be used to infer the 

direction of the wind. Bounding boxes were plotted 

around each digitized TAR, and the orientation of the 

short axis was used to compute mean wind direction 

statistics across the site [e.g. 2] (with 180 degree 

ambiguity, since TARs are symmetrical) The results of 

this analysis are shown in figure 2.  

 

 
Figure 2: frequency of TAR short axis frequency for 

5 HiRISE images around the Zhurong/Tianwen-1 

Landing Site. Values on the concentric circles denote 

frequency of occurrence. Orientation shows direction 

from which winds are inferred to blow.  

(ESP_066331_2055_RED, ESP_069876_2055_RED, 

ESP_069731_2055_RED, ESP_069665_2055_RED, 

and 069111_2055_RED.)  

The majority of features are orientated WNW-ESE 

(fig 1), the direction transverse to their crest (fig 2) is 

thus NNE-SSW.  

Conclusions: In this small study, we were able to 

rapidly and reliably extract TAR orientations from 

HiRISE images using a COTS DL system. As the 

ArcGIS DL tools we used are widely available within 

many planetary science groups, this will allow trained 

models to be shared easily and to extend the study to 

regional or global scales.  
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