
THE EVOLUTION OF HYDROGEN ISOTOPES IN CHONDRITIC INSOLUBLE ORGANIC MATTER.

G. D. Cody¹, C. M. O'D. Alexander¹, D. I. Foustoukos¹, Y. Kebukawa², ¹Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, ²Yokohama National University, Yokohama, Japan.

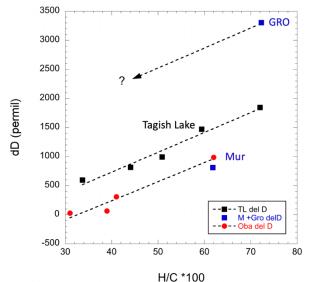

Introduction: It has been long established that insoluble organic matter (IOM) is the carrier of the exotic D enrichment characteristic of carbonaceous chondrites (CCs) [1]. Such enrichment firmly establishes some link between IOM and low temperature chemistry capable of fractionating D far above the solar D/H ratio. Over the years, numerous studies have shown that IOM from type 1 and 2 CCs exhibit evidence of surprisingly large degrees of molecular evolution indicated by significant variation in H/C (atm.), from ~ 0.72 down to 0.33, and the fraction of aromatic carbon (F_A), from a low of 0.55 up to 0.80 [2-5]. These are remarkable changes in organic molecular structure in meteorites (Fig. 1) where no significant mineralogical indications exist for designation other than type 1 or 2 [6].

Figure 1: Variation of H/C x100 vs. Fraction of aromatic carbon (F_A) for IOM isolated from GRO 95577 (CR1), Murchison (CM2) (open squares), and the Tagish Lake Clasts (C2, ungrouped) (filled squares).

From studies of the molecular structure of heated CM's [7], there is a very clear directionality in organic molecular evolution, i.e., from high H/C-low F_A to low H/C-high F_A .

One of the remarkable discoveries related to the Tagish Lake fall was the identification of discrete clasts [3,6] in which it was shown that there is a very systematic linear relationship between IOM's δD and H/C, F_A [3], where with increasing degree of molecular evolution, δD drops significantly, suggesting a connection between isotropic depletion and molecular evolution (Fig. 2).

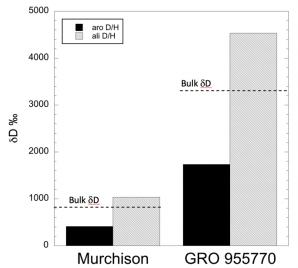


Figure 2: Variation in δD (‰) vs H/C x 100 for IOM from the Tagish Lake clasts and variation in the same for Murchison IOM experimentally subjected to hydro-thermal alteration [8] along with the bulk δD of Murchison and GRO 95577 IOM.

Increases in δD with kerogen molecular evolution are commonly observed [9] and have been demonstrated in step pyrolysis experiments of terrestrial type 3 kerogen [10]. Enrichment in D with thermal metamorphism is thought to be derived from the fact that the C-D bond is stronger than the C-H bond. In this regard the Tagish Lake Trend (TLT, Fig. 2) and the hydrothermal experiments on Murchison IOM [8] are clearly anomalous. Similarly anomalous δD depletion trends with H/C during molecular evolution have been observed in stepped "dry" pyrolysis experiments with Murchison IOM [10]

In order to shed light on the molecular origins of the behavior exhibited in Tagish Lake or C1/2s, we set out to study intramolecular D/H partitioning between aliphatic and aromatic hydrogen reservoirs in IOM employing ¹H and D solid state Nuclear Magnetic Resonance (NMR) spectroscopy. Whereas ¹H NMR is straightforward due to ¹H's high natural abundance and large gyromagnetic ratio (γ), the terrestrial D/H is extremely low and even in the most D enriched IOM (e.g., GRO 95577 δ D = 3300 ‰) D/H is only 0.04 %, while D's γ is 6 times smaller than ¹H's.

We were able to isolate sufficient IOM from both Murchison (CM2) and GRO 95577 (CR1) to enable acquisition of D NMR from both reservoirs. We find that, relative to the aromatic reservoir, both samples exhibit considerable enrichment of D in the aliphatic hydrogen reservoir, but GRO 95577 has slightly greater aliphatic D enrichment than Murchison's IOM (Fig. 3). We also performed experiments simulating the formation of IOM from simple sugars in D_2O and again employing ¹H and D NMR to reveal that the synthetic IOM exhibits a very strong preference to store D in the aliphatic hydrogen reservoir.

Figure 3: Intramolecular partitioning of D and H in aliphatic and aromatic hydrogen reservoirs of Murchison and GRO95577 IOM.

While we do not have sufficient IOM from the precious Tagish Lake clasts to obtain D NMR spectra, there is considerable molecular similarity between GRO 95577 and Clast 5b IOM and between Murchison and Clast 11h IOM. The nearly parallel slopes of δ D vs H/C (Fig. 2) for the Tagish Lake clasts and hydrothermally altered Murchison IOM [8] suggests that we can use the intramolecular D-H partitioning behavior exhibited in Fig. 3 and impose this onto the molecularly evolved Tagish Lake IOM.

From previous ¹H NMR studies of Tagish Lake IOM from different clasts [3] we have a clear understanding of how the hydrogen reservoirs change during molecular evolution - the ratio of aliphatic-H to aromatic-H decreases linearly with reduction in H/C. Thus, the significant reduction in H/C (Fig. 1) is predominantly driven by a loss of the aliphatic hydrogen reservoir [3]. Similar hydrogen behavior has also been observed for IOM from other CCs [4], suggesting that the molecular structure of IOM from any type 1 and 2 CC will lie somewhere along a highly constrained vector in H/C, FA, and Faro-H space.

We can, therefore, understand the anomalous trend in δD with H/C exhibited in Fig. 2 as arising from the preferential loss of the D-rich aliphatic hydrogen reservoir with molecular evolution. Applying the D/H partitioning observed in GRO 95577 (Fig. 3) and the evolution in aliphatic and aromatic hydrogen reservoirs as a function of H/C [3] does predict a reduction in δD with H/C of ~ -300 ‰ over the range of the TLT. This is significantly less, however, than what is observed (Fig. 2) where the reduction is ~ 1300 ‰. Clearly more than just loss of the aliphatic hydrogen reservoir is driving the TLT.

It is well known that the δD of IOM in the CCs is significantly heavier than the δD of water in clay minerals [11], and they are not in isotopic equilibrium. In order to explain the TLT, a model is developed based on the D-H partitioning (Fig. 3) and the molecular evolution of the aliphatic and aromatic hydrogen reservoirs (Fig. 3).

The model predicts that over the span of time during which the TLT emerged, a combination of molecular evolution (diminishment of the aliphatic hydrogen reservoir) and more rapid partial D-H exchange between the aliphatic hydrogen reservoir and the D depleted water can explain the TLT. Interestingly the model predicts that the aromatic hydrogen reservoir will get slightly isotopically heavier (~ 200 ‰) along the TLT, behavior that is expected and has been shown for terrestrial organic matter molecular evolution, both naturally [9] and experimentally [10].

While this isotopic model does not rely on kinetics directly, it does place some necessary constraints on the time-temperature-transformation domain Tagish Lake's IOM must have been in during the emergence of the TLT. Basically, the molecular evolution and isotopic exchange exhibited across the TLT must have occurred in a thermal regime that enabled molecular evolution to proceed at a faster rate then D-H exchange [12,13]. The kinetics of D-H exchange between IOM and water is surprisingly sluggish [12,13]. Using the experimental results on Murchison [8] (Fig. 2), suggests that the duration of the perturbative hydrothermal event was short term, meaning days, not months or years.

Acknowledgments: We gratefully acknowledge support by the NASA Emerging Worlds program, grant 80NSSC20K0344.

References: [1] Robert and Epstein (1982) GCA, 46, 81-95. [2] Alexander et al. (2007) GCA, 71, 4380-4403.[3] Herd et al. (2011) Science, 332, 1304-1307.[4] Cody & Alexander (2005) GCA, 69, 1085-1097.[5] Alexander et al. (2017) Chem. Erd. Geochem. 77, 227-256.[6] Blinova et al. (2014) MAPS, 49, 473-502.[7] Yabuta et al. (2010) GCA, 74, 4417-4437.[8] Oba & Naraoka (2009) MAPS, 44, 943-954.[9] Schimmelmann et al.(2006) Ann. Rev. Earth. Planet. Sci., 34, 501-533.[10] Okumura & Mimura (2011) GCA, 75, 7063-7080. [11] Alexander et al. (2021) MAPS, 56, 440-454.[13] Foustoukos et al. (2021) GCA, 300, 44-64.