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Introduction: X-ray computed tomography (XCT) 

measurements are increasingly being used for 3D re-

connaissance imaging of meteorites and returned sam-

ples to identify interesting lithologies or petrographic 

structures prior to sample processing and detailed min-

eralogical and chemical analyses [1]. Although XCT 

imaging is generally considered to be a non-destructive 

technique because silicate and metallic minerals in 

chondrites are not affected by X-rays at the intensities 

and wavelengths typically used, XCT can alter the 

natural radiation history of chondrites as measured by 

thermoluminescence [2]. Thus, there is also concern 

that XCT imaging could alter the organic content.  

Previous experiments with the Murchison meteorite 

have shown that XCT and synchrotron XCT imaging 

up to a total dose of 2800 Gy do not alter the total ami-

no acid abundances or their enantiomeric ratios in the 

meteorite after exposure [3,4]. However, the impact of 

XCT on bulk chemistry, other soluble organic matter 

(SOM) compound classes, and insoluble organic mat-

ter (IOM) in carbonaceous meteorites is unknown. To 

test this and inform planning for samples of carbona-

ceous asteroid Bennu being returned by the OSIRIS-

REx mission, we conducted an XCT imaging experi-

ment. 

Samples and Methods: All glassware, ceramics, 

and sample handling tools used in this study were py-

rolyzed at 500 ºC in air overnight. Multiple cm-sized 

chips of Murchison (USNM 5453) with a total mass of 

10.3 g were hand crushed using a ceramic mortar and 

pestle. The powdered samples were not sieved in this 

study to reduce contamination risk. The powder was 

then transferred to a glass vial and homogenized by 

vortex mixing inside a positive pressure HEPA filtered 

laminar flow hood at JSC. Half of the total Murchison 

powder mass was transferred to a separate glass vial 

for use as a control and thus was not exposed to X-rays 

(labeled A). The remaining half (labeled B) was 

scanned using the Nikon XTH 320 CT instrument at 

NASA JSC (source energy: 160 kV; current: 38 A; 

source to sample distance: 39.2 mm; duration: 500 

min). A total X-ray dose of the sample of ~180 Gy 

during the scan calculated using the method of [4] rep-

resents the maximum dose a Bennu sample could ex-

perience during preliminary examination at JSC. Indi-

vidual aliquots of the A and B powders were then sent 

to multiple institutions without revealing which sample 

had been in the XCT instrument as a “blind” test.    

Both samples (~1.3 g each) were sent to the CIS for 

bulk C, N, and H abundance and isotopic analyses us-

ing an elemental analyzer-isotope ratio mass spectrom-

eter (EA-IRMS) [5] and 1H and 13C solid state nuclear 

magnetic resonance (NMR) analyses of IOM residues 

isolated by CsF/HF acid dissolution of the meteorite 

powders [6]. NanoIR spectroscopy measurements of 

the IOM residues were also performed at the California 

State University San Marcos [7]. In addition, separate 

~1 g portions of A and B were sent to Tohoku and 

Hokkaido Universities for the analyses of sugars [8] 

and N-heterocycles [9] in water and 2% HCl extracts 

using gas and liquid chromatography-mass spectrome-

try (GC-MS and LC-MS), respectively. ~2 g each of A 

and B were sent to GSFC to determine the distributions 

and abundances of other soluble organic compounds 

present in water and dichloromethane (DCM) extracts 

including protein amino acids, amines, aldehydes, ke-

tones, monocarboxylic and hydroxy acids, alcohols, 

and polycyclic aromatic hydrocarbons (PAHs) using 

GC-MS and LC-MS [10]. The total surface areas of the 

A and B residues after water extraction were measured 

using a Quantachrome Nova 2200e analyzer at GSFC. 

Results and Discussion: The XCT radiogram of B 

showed significant particle size heterogeneity with 

diameters up to ~1 to 2 mm for some grains. We report 

the bulk chemistry, SOM, and IOM data from the 

Murchison A and B samples. We assume that if there 

are no differences in the total abundances, distributions 

and isotopic compositions of organics in these samples 
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within analytical errors, then XCT has no impact on 

the sample. We did not determine the particle size fre-

quency distribution of A, and given the range of parti-

cles sizes in B, SOM extraction efficiency differences 

between the samples must also be considered.   

Bulk chemistry data. A summary of the average 

bulk C, N, and H abundances and their isotopic com-

positions from two replicate EA-IRMS measurements 

of ~20 mg of A and B is shown in Table 1. The data 

were similar within the 1- errors and are also con-

sistent with previous analyses of Murchison [5]. They 

indicate that the A and B powders analyzed were 

chemically homogenous with respect to total C, N, and 

H with no evidence of alteration during the XCT scan. 

Table 1. Bulk chemistry data from the Murchison samples. 

Measurement Control (A) XCT (B) 

Total C (wt.%) 1.92 ± 0.02 1.98 ± 0.03 

Bulk 13C (‰) -2.7 ± 0.1 -2.5 ± 0.5 

Total N (wt.%) 0.101 ± 0.001 0.104 ± 0.002 

Bulk 15N (‰) +44.6 ± 0.2 +45.8 ± 0.8 

Total H (wt.%) 1.058 ± 0.053 1.135 ± 0.057 

Bulk D (‰) -33.2 ± 8.0 -38.9 ± 3.8 

IOM data. Acid dissolution of the A and B pow-

ders yielded 16.4 and 18.1 mg of IOM, respectively, 

which represents ~1.5 wt.% of the total meteorite 

mass. 13C and 1H solid state NMR measurements of the 

IOM from A and B found that the fractions of aromatic 

C and aromatic H were identical and only slightly low-

er than the values previously measured for Murchison 

IOM [6]. These results show no impact from XCT on 

the molecular composition of IOM in Murchison.  

SOM data. A comparison of the total abundances 

of targeted soluble organic compound classes meas-

ured in water (protein amino acids, amines, aldehydes, 

ketones, monocarboxylic and hydroxy acids, sugars, 

N-heterocycles) and DCM (alcohols, PAHs) extracts of 

~0.5 to 1 g aliquots of the A and B powders is shown 

in Fig. 1. With the exception of alcohols and PAHs, the 

total abundances of all other soluble organic compound 

classes were higher in B than A, as indicated by the 

percentage change shown above the bars (Fig. 1). De-

spite these increases, there was no measurable change 

in the relative distributions of the individual com-

pounds in each class after XCT. The very low sugar 

abundances measured in the A extract may be due to 

the higher Fe2+ concentration in the extract which re-

quired additional purification steps that were not done 

with the B extract and that could have led to additional 

analyte loss in A. Although the total abundance of pen-

toses in B was half that previously reported for another 

Murchison sample [8], the two comparative relative 

abundances were identical, indicating that X-rays did 

not alter the relative distribution of these sugars in B. 

The ~20% increase in total amino acid abundances 

in B relative to A (Fig. 1) was surprising because pre-

vious experiments showed no change in amino acid 

abundances in Murchison after XCT imaging at even 

higher total X-ray doses [4]. The total surface area of 

the B residue after water extraction was slightly higher 

(22.8 ± 0.5 m2/g) than the A residue (21.6 ± 0.6 m2/g), 

which may explain the higher yields of protein amino 

acids and amines in B. It is also possible that the high-

er abundances of some soluble organics in B resulted 

from IOM breakdown by the X-rays during XCT.  

 
Figure 1. Total abundances of soluble organics in the Mur-

chison A (control) and B (XCT) samples. The percent abun-

dance change from A to B is shown above the bars. 

Conclusions: XCT imaging of Murchison at a total 

X-ray dose of ~180 Gy had no effect on the bulk 

chemistry and average molecular composition of IOM 

within measurement errors and expected sample heter-

ogeneity. The elevated abundances of most, but not all, 

SOM compound classes in B compared to A is likely 

related to surface area differences between the sample 

aliquots used for the extractions, rather than production 

from IOM by X-rays. Additional experiments will be 

needed to test this hypothesis.  Nevertheless, these data 

provide confidence that XCT will not significantly 

alter the bulk chemistry and average molecular compo-

sition of IOM in samples returned by OSIRIS-REx.  
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