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Introduction: Impact craters on the Moon are formed 

by the collision of a meteorite with the lunar surface, and 
the crater morphology can provide information on both 
projectile (e.g., diameter, velocity, and impact angle) and 
target (e.g., strength, porosity and gravity) properties [1]. 
Early studies of crater morphology focused on the 
diameter-dependence of morphometric parameters such as 
crater depth and rim height [2]. More recently, several 
three-dimensional shape models of fresh lunar craters 
were developed as the initial condition to simulate the 
topographic evolution of the lunar surface [3]. These 
three-dimensional shape models, however, always assume 
an axis-symmetric geometry for the crater morphology, 
and therefore they fail to reproduce the detailed texture of 
the cratered surface. 

In comparison to directly modeling a lunar crater in 
the spatial domain, the power spectral density of its 
geometry in the frequency/wavelength domain has 
presented a great potential to reproduce its topographic 
variation at different wavelengths [4–6]. In this study, we 
demonstrate how to create the realistic rim outlines for 
fresh lunar craters using their power spectral densities and 
discuss what information can be extracted from the shape 
of crater rims. 

Power Spectral Density of the Rim Outline: We 
started by selecting 78 craters (D=1–130 km) with a crisp 
rim, blocky surface and simple geologic context as our 
candidate fresh craters [7]. Then, their crater rims were 
vectorized by tracking the highest elevations along the 
rim crest in the SLDEM topographic data. Assuming a 
spherical geometry, the radial distance between the vertex 
on the rim crest and the crater center was later calculated 
as a function of the accumulative chord length between 
two vertices (Fig. 1a). The power spectral density of the 
rim outline was therefore calculated as [8]: 

                                
where S is the power spectral density, r is the radial 
distance between rim vertex and crater center, L is the rim 
perimeter, and  denotes the Fourier transform.  

Taking the rim of crater Copernicus (D=93 km) as an 
example, it can be seen that its power spectral density first 
increases with increasing topographic wavelength with a 
power-law slope of ~4, then reaches a plateau within 20–
160 km, and finally drops rapidly at the longest 
wavelength (i.e., the rim perimeter L) (Fig. 1b). In order 
to characterize the overall trend of this power spectral 
density, four breakpoints can be placed at the resolution 
limit (the rim perimeter divided by the number of 
vertices), the onset of the plateau, the second-to-last point 

 
Fig. 1. (a) Radial distance between rim vertex and crater 
center as a function of accumulative chord length for crater 
Copernicus. (b) Power spectral density of the rim outline of 
crater Copernicus, where the four breakpoints and the best fit 
are shown. 

(at half of the rim perimeter L/2) and the last point. Note 
that since the resolution limit depends on the number of 
vertices, which is different for each vectorization, we later 
used the slope between the first and second breakpoints to 
characterize the variation of the power spectral density 
between them. 

In this manner, the power spectral density of each 
fresh crater was fitted by using four breakpoints with the 
least summed square of misfit. Next, the wavelength and  

 
Fig. 2. Power of the third breakpoint as a function of crater 
diameter. 
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power (i.e., x and y values) of the breakpoint as well as 
the slope between the first two breakpoints were fitted 
with respect to the crater diameter. It was then found that 
the powers of the three breakpoints all increase with 
crater diameter but with a distinct change in slope at the 
transition of simple to complex craters (D=~20 km) [2], 
as is shown for the power of the third breakpoint in Fig. 2. 

Reconstruction of the Rim Outline:  With a given 
crater diameter, we can then predict the wavelength and 
power of the four breakpoints based on the 
breakpoint/slope-diameter relations (e.g., Fig. 2). Next, 
we connected the four breakpoints with straight lines in 
the log-log space, to which Gaussian random noises were 
added (gray dots in Fig. 3) to mimic the variation in the 
power spectral density of the crater rim (Fig. 1b). The 
standard deviation of these Gaussian random noises is the 
average root-mean-squared misfit obtained when fitting 
the power spectral densities of the rim outlines of fresh 
craters. If the rim outline is reconstructed with N vertices, 
its power spectral density should have N/2 components 
according to the Nyquist sampling law. Each component 
in the synthetic power spectral density (gray dots in 
Fig. 3) should correspond to a sine wave in the spatial 
domain, of which the amplitude and period are 
determined by the power and wavelength of each 
component. In the end, the rim outline can be 
reconstructed by summing those sine waves as: 

     
where N is the number of vertices, Si is the power spectral 
density at the topographic wavelength L/i, l is the 
accumulative chord length, and lrand is a random number 
with a uniform distribution between 0 and L/i, which 
guarantees that the newly generated rim outline is 
different each time. 

We then evaluated how the power of the breakpoint 
changes the shape of the rim outline in the spatial domain. 
Using the power of the third breakpoint as an example 
(Fig. 2), it represents the amplitude of a sine wave with a 

 
Fig. 3. Synthetic power spectral density used to reconstruct 
the rim of a Copernicus-sized crater. The breakpoints and the 
slope between the first two breakpoints are shown. 

          
Fig. 4. Rim outlines of a Copernicus-sized crater generated 
with different powers of the third breakpoint (i.e., bp3_y). 

period of half of the rim perimeter. For a Copernicus-
sized crater, if the power of the third breakpoint increases 
from a normal value of 105 to atypical values of 106 and 
107, this would result in more and more elliptical crater 
rims (Fig. 4). This is to be expected, since an ellipse is 
always axis-symmetric with respect to its major/minor 
axis and thus has a strong power at half of the perimeter.   

Implications for the Simple-to-complex Transition 
of Lunar Craters: As the crater diameter increases, the 
morphology of lunar craters changes from a simple 
bowled shape to having more complex appearances such 
as a scalloped rim (Fig. 4), wall terraces, flat floor, and a 
central peak [1]. A transitional crater is defined as having 
one or a few of those complex features, but not all of 
them [1]. In the spatial domain, the diameter of such a 
transitional crater can be identified in the relation between 
morphometric parameters (e.g., crater depth and rim 
height) and crater diameter, which usually occurs at 
D=15–20 km [2]. Whereas in the wavelength domain 
(Fig. 2), the distinct slope change in the breakpoint 
power-crater diameter relation at D=~20 km also points 
to the transition from simple to complex craters. This 
provides a new way to define the diameter of transitional 
craters, which can also be applied to craters on other 
planetary bodies.  

Conclusions: We modeled the rim outline of fresh 
lunar craters based on their power spectral densities, and 
found that the simple-to-complex transition of lunar 
craters can also be identified in the power spectral density 
of the rim outline. Future studies will focus on modeling 
other morphologic features (e.g., crater floor and 
continuous ejecta) using similar techniques. 
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