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Introduction: Ground-based radar observations
readily identified volatile deposits within permanently
shadowed regions (PSRs) of some polar Mercurian cra-
ters due to their high backscatter and circular polariza-
tion ratio (CPR) [1,2]. Such properties are similar to
those of the icy Galilean moons and the Martian polar
ice deposits [3,4], suggesting regions of nearly-pure wa-
ter ice [5]. Indeed, later observations by MESSENGER
provided support for this interpretation [e.g., 6].

Although the thermal environment of lunar PSRs
also allows for stable water ice [7], they do not exhibit
enhanced backscatter and CPR in Arecibo S- (12.6 cm,
2380 MHz) or P-band (70 cm, 430 MHz) radar imagery
[8,9]. Yet, using spectra from the Moon Mineralogy
Mapper, [10] found evidence of exposed surficial water
ice within some lunar PSRs. Furthermore, using the
Miniature Radio Frequency (Mini-RF) instrument
aboard the Lunar Reconnaissance Orbiter (LRO), [11]
found that bistatic S-band measurements of Cabeus
crater showed an opposition effect potentially indicative
of buried ice. Dielectric permittivity inversion studies
using radar measurements with Mini-RF and the Dual
Frequency Synthetic Aperture Radar (DFSAR) aboard
Chandrayaan-2 have also identified locations of high di-
electric permittivity within some lunar PSRs [12,13].
However, the studied craters all have CPR < 1, which is
not expected for multiple scattering events within ice
where 1 < CPR < 2 is predicted [14]. Thus, CPR may
not be a robust diagnostic tool to identify volatile depos-
its. Indeed, [15] showed that the CPR of the radar bright
features at the north pole of Mercury are indistinguish-
able from the background, non-icy regolith.

Recently, [16] proposed a new polarimetric analyti-
cal technique to investigate radar scattering. In their
work, [16] proposed that the same-circular (SC) and op-
posite-circular (OC) backscatter coefficients can be
used separately to improve target characterization.
Here, we leverage this technique to revisit the northern
Mercurian polar deposits and some lunar PSRs.

Mercury: We used the Arecibo S-band radar ob-
servations collected during the 2019 inferior conjunc-
tion presented in [15]. In their work, they showed that
variation in the radar backscatter of the north polar PSRs
can be attributed to differences in ice purity. Addition-
ally, by using a k-means clustering algorithm, they
found that while some craters show a central bright fea-
ture surrounded by lower backscatter in a gradational
pattern, other craters presented a mottled radar return.

Here we studied the radar scattering properties of
PSRs within five large craters at Mercury’s north pole —
Chesterton, Tolkien, Tryggvadottir, Kandinsky, and
Prokofiev — to further investigate the two observed pat-
terns. Of these craters, Chesterton, Tolkien, and
Tryggvadottir presented a gradational pattern in their
backscatter while Kandinsky and Prokofiev did not. The
SC and OC backscatter coefficients for the highest and
lowest k-means classes were sampled and, following
[16], we did a linear least-squares fit (LSF) to the meas-
urements. In their work, [16] showed that the LSF slope
describes the abundance and morphology of wave-
length-scale scatterers and the intercept the dielectric
permittivity. In Fig. 1, we show the LSF derived values
ratioed with the background, non-icy terrain.
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Figure 1: LSF slope and intercept relative to the background
non-icy terrain for Chesterton, Tolkien, and Tryggvadottir
(circles), and Kandinsky and Prokofiev (squares) for the high-
est (cyan) and lowest (blue) SC radar backscatter (i.e., high
and low k-means classes from [15]). Error bars are 2-c.

Regardless of backscatter intensity, all craters ex-
hibit a LSF intercept higher than the background terrain,
suggesting their dielectric permittivity is higher. The
brightest regions within Kandinsky and Prokofiev result
in an intercept that is indistinguishable from that ob-
tained using the lowest backscatter. This suggests that
brightness variations within craters with a mottled radar
return are likely not dominated by differences in dielec-
tric permittivity. On the other hand, the highest
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backscatter from craters exhibiting a gradational pattern
results in an intercept that is higher than the lowest
backscatter. This suggests that radar bright regions
within Chesterton, Tolkien, and Tryggvadottir likely
have a higher dielectric permittivity than less bright re-
gions, in agreement with [15]. The brightest regions
within the studied craters also result in a slope that is not
fully distinguishable from the background, non-icy ter-
rain. This may indicate similarities in the wavelength-
scale scatterers. Interestingly, lower backscatter regions
within Chesterton, Tolkien, and Tryggvadoéttir have a
higher LSF slope than the background terrain, indicat-
ing a material dominated by less and/or smoother scat-
terers, while similar regions within Prokofiev and Kan-
dinsky have a lower slope. This suggests further local-
scale complexities in the Mercurian deposits.

The Moon: For this study, we chose PSR-hosting
lunar craters with radar signatures indicative of ice [11-
13]: Cabeus, both an unnamed crater within it (85.5°S,
308.2°E) and the large PSR near a crater wall (84.4°S,
314.1°E), Hermite, both the large PSR (84.8°N,
251.9°E) and an unnamed small crater within it (87.1°N,
273.7°E), Hermite A (87.9°N, 309°E), and Malinkin
(87.2°S, 75.9°E). We used Mini-RF monostatic radar
products, which include maps of the four Stokes param-
eters, to derive the SC and OC backscatter. The radar
backscatter coefficients were then sampled from con-
trolled polar mosaics of the north and south pole. The
derived LSF slopes and intercepts of the PSR locations
were ratioed against non-PSR regions within or near the
same crater and within the same Mini-RF collect. The
results are shown in Fig. 2.
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Figure 2: The LSF slope and intercept relative to non-PSR
terrain for the studied lunar craters (circles) following the
color code in the legend. Error bars are 2-c.
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The backscatter from the studied PSRs within Ca-
beaus and Malinkin result in an intercept that is higher
than non-PSR terrain. This would suggest these arcas
have a higher dielectric permittivity than ice-free rego-
lith, which could be due to slabs of ice or, more gener-
ally, a higher bulk density. On the other hand, the un-
named crater within Hermite and Hermite A both have
backscatter that results in a lower intercept. This is in-
dicative of a material with a lower dielectric permittiv-
ity, which could be due to lower bulk density, as in a
substrate composed of ice, rock, and significant poros-
ity. These craters also are all characterized by a lower
slope than non-PSR terrain, which would imply more
and/or rougher scatterers. Finally, the derived LSF in-
tercept and slope for the large PSR within Hermite
crater are indistinguishable from ice-free regolith. As
such, it likely hosts little to no ice.

Conclusions: The polarimetric analytical tech-
nique from [16] reproduces radar modeling results from
[15] and improves characterization of the Mercurian
north polar ice deposits. Indeed, we identified additional
local-scale heterogeneities between Mercurian PSRs.
For the Moon, we found that the large PSR within Her-
mite crater likely hosts little to no ice, unlike suggested
by [12]. We also identified variations in the dielectric
permittivity of regolith within PSRs, which is support-
ive of dielectric inversion studies [13] and may point to
locations of ice deposits, as suggested by the observed
opposition effect with Mini-RF bistatic data [11]. We
found that, unlike on Mercury, some lunar PSRs have a
lower dielectric permittivity than non-icy regions, indi-
cating patchy and/or porous ice. Thus, such ice deposits
on the Moon may be older and/or more processed than
Mercurian deposits, as suggested by [17].
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