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Introduction:  Ground-based radar observations 

readily identified volatile deposits within permanently 
shadowed regions (PSRs) of some polar Mercurian cra-
ters due to their high backscatter and circular polariza-
tion ratio (CPR) [1,2]. Such properties are similar to 
those of the icy Galilean moons and the Martian polar 
ice deposits [3,4], suggesting regions of nearly-pure wa-
ter ice [5]. Indeed, later observations by MESSENGER 
provided support for this interpretation [e.g., 6].  

Although the thermal environment of lunar PSRs 
also allows for stable water ice [7], they do not exhibit 
enhanced backscatter and CPR in Arecibo S- (12.6 cm, 
2380 MHz) or P-band (70 cm, 430 MHz) radar imagery 
[8,9]. Yet, using spectra from the Moon Mineralogy 
Mapper, [10] found evidence of exposed surficial water 
ice within some lunar PSRs. Furthermore, using the 
Miniature Radio Frequency (Mini-RF) instrument 
aboard the Lunar Reconnaissance Orbiter (LRO), [11] 
found that bistatic S-band measurements of Cabeus 
crater showed an opposition effect potentially indicative 
of buried ice. Dielectric permittivity inversion studies 
using radar measurements with Mini-RF and the Dual 
Frequency Synthetic Aperture Radar (DFSAR) aboard 
Chandrayaan-2 have also identified locations of high di-
electric permittivity within some lunar PSRs [12,13]. 
However, the studied craters all have CPR < 1, which is 
not expected for multiple scattering events within ice 
where 1 ≲	CPR ≲ 2 is predicted [14]. Thus, CPR may 
not be a robust diagnostic tool to identify volatile depos-
its. Indeed, [15] showed that the CPR of the radar bright 
features at the north pole of Mercury are indistinguish-
able from the background, non-icy regolith.  

Recently, [16] proposed a new polarimetric analyti-
cal technique to investigate radar scattering. In their 
work, [16] proposed that the same-circular (SC) and op-
posite-circular (OC) backscatter coefficients can be 
used separately to improve target characterization. 
Here, we leverage this technique to revisit the northern 
Mercurian polar deposits and some lunar PSRs.  

Mercury:  We used the Arecibo S-band radar ob-
servations collected during the 2019 inferior conjunc-
tion presented in [15]. In their work, they showed that 
variation in the radar backscatter of the north polar PSRs 
can be attributed to differences in ice purity. Addition-
ally, by using a k-means clustering algorithm, they 
found that while some craters show a central bright fea-
ture surrounded by lower backscatter in a gradational 
pattern, other craters presented a mottled radar return.  

Here we studied the radar scattering properties of 
PSRs within five large craters at Mercury’s north pole – 
Chesterton, Tolkien, Tryggvadóttir, Kandinsky, and 
Prokofiev – to further investigate the two observed pat-
terns. Of these craters, Chesterton, Tolkien, and 
Tryggvadóttir presented a gradational pattern in their 
backscatter while Kandinsky and Prokofiev did not. The 
SC and OC backscatter coefficients for the highest and 
lowest k-means classes were sampled and, following 
[16], we did a linear least-squares fit (LSF) to the meas-
urements. In their work, [16] showed that the LSF slope 
describes the abundance and morphology of wave-
length-scale scatterers and the intercept the dielectric 
permittivity. In Fig. 1, we show the LSF derived values 
ratioed with the background, non-icy terrain.  

 
Figure 1:  LSF slope and intercept relative to the background 
non-icy terrain for Chesterton, Tolkien, and Tryggvadóttir 
(circles), and Kandinsky and Prokofiev (squares) for the high-
est (cyan) and lowest (blue) SC radar backscatter (i.e., high 
and low k-means classes from [15]). Error bars are 2-s.  

Regardless of backscatter intensity, all craters ex-
hibit a LSF intercept higher than the background terrain, 
suggesting their dielectric permittivity is higher. The 
brightest regions within Kandinsky and Prokofiev result 
in an intercept that is indistinguishable from that ob-
tained using the lowest backscatter. This suggests that 
brightness variations within craters with a mottled radar 
return are likely not dominated by differences in dielec-
tric permittivity. On the other hand, the highest 
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backscatter from craters exhibiting a gradational pattern 
results in an intercept that is higher than the lowest 
backscatter. This suggests that radar bright regions 
within Chesterton, Tolkien, and Tryggvadóttir likely 
have a higher dielectric permittivity than less bright re-
gions, in agreement with [15]. The brightest regions 
within the studied craters also result in a slope that is not 
fully distinguishable from the background, non-icy ter-
rain. This may indicate similarities in the wavelength-
scale scatterers. Interestingly, lower backscatter regions 
within Chesterton, Tolkien, and Tryggvadóttir have a 
higher LSF slope than the background terrain, indicat-
ing a material dominated by less and/or smoother scat-
terers, while similar regions within Prokofiev and Kan-
dinsky have a lower slope. This suggests further local-
scale complexities in the Mercurian deposits. 

The Moon:  For this study, we chose PSR-hosting 
lunar craters with radar signatures indicative of ice [11-
13]: Cabeus, both an unnamed crater within it (85.5°S, 
308.2°E) and the large PSR near a crater wall (84.4°S, 
314.1°E), Hermite, both the large PSR (84.8°N, 
251.9°E) and an unnamed small crater within it (87.1°N, 
273.7°E), Hermite A (87.9°N, 309°E), and Malinkin 
(87.2°S, 75.9°E). We used Mini-RF monostatic radar 
products, which include maps of the four Stokes param-
eters, to derive the SC and OC backscatter. The radar 
backscatter coefficients were then sampled from con-
trolled polar mosaics of the north and south pole. The 
derived LSF slopes and intercepts of the PSR locations 
were ratioed against non-PSR regions within or near the 
same crater and within the same Mini-RF collect. The 
results are shown in Fig. 2.  

 
Figure 2:  The LSF slope and intercept relative to non-PSR 
terrain for the studied lunar craters (circles) following the 
color code in the legend. Error bars are 2-s. 

The backscatter from the studied PSRs within Ca-
beaus and Malinkin result in an intercept that is higher 
than non-PSR terrain. This would suggest these areas 
have a higher dielectric permittivity than ice-free rego-
lith, which could be due to slabs of ice or, more gener-
ally, a higher bulk density. On the other hand, the un-
named crater within Hermite and Hermite A both have 
backscatter that results in a lower intercept. This is in-
dicative of a material with a lower dielectric permittiv-
ity, which could be due to lower bulk density, as in a 
substrate composed of ice, rock, and significant poros-
ity. These craters also are all characterized by a lower 
slope than non-PSR terrain, which would imply more 
and/or rougher scatterers. Finally, the derived LSF in-
tercept and slope for the large PSR within Hermite 
crater are indistinguishable from ice-free regolith. As 
such, it likely hosts little to no ice.  

Conclusions:  The polarimetric analytical tech-
nique from [16] reproduces radar modeling results from 
[15] and improves characterization of the Mercurian 
north polar ice deposits. Indeed, we identified additional 
local-scale heterogeneities between Mercurian PSRs. 
For the Moon, we found that the large PSR within Her-
mite crater likely hosts little to no ice, unlike suggested 
by [12]. We also identified variations in the dielectric 
permittivity of regolith within PSRs, which is support-
ive of dielectric inversion studies [13] and may point to 
locations of ice deposits, as suggested by the observed 
opposition effect with Mini-RF bistatic data [11]. We 
found that, unlike on Mercury, some lunar PSRs have a 
lower dielectric permittivity than non-icy regions, indi-
cating patchy and/or porous ice. Thus, such ice deposits 
on the Moon may be older and/or more processed than 
Mercurian deposits, as suggested by [17].  

Acknowledgements:  This work was supported by 
NASA through LRO’s Mini-RF instrument. Controlled polar 
mosaics of Mini-RF data were produced by R. Kirk (USGS). 
The Arecibo planetary radar project is funded by NASA.  

References:  [1] Harmon, J. K. & Slade, M. A. (1992) 
Science 258, 640-643. [2] Slade, M. A. et al. (1992) Science 
258, 635-640. [3] Ostro, S. J. et al. (1992) JGR 97, 18227-
18244. [4] Muhleman, D. O. et al. (1991) Science 253, 1508-
1513. [5] Butler, B. J. et al. (1993) JGR 98, 15003-15023. [6] 
Lawrence, D. J. et al. (2013) Science 339, 292-296. [7] 
Vasavada, A. R. et al. (1999) Icarus 141, 179-193. [8] Stacey, 
N. J. S. et al. (1997) Science 276, 1527-1530. [9] Campbell, 
B. A. et al. (2003) Nature 426, 137-138. [10] Li, S. et al. 
(2018) PNAS 115, 8907-8912. [11] Patterson, G. W. et al. 
(2017) Icarus 283, 2-19. [12] Singh, A. et al. (2022) Adv. in 
Space Research 70, 4030-4055. [13] Sharma, A. et al. (2023) 
Icarus 391, 115350. [14] Hapke, B. (1990) Icarus 88, 407-417. 
[15] Rivera-Valentín, E. G. et al. (2022) PSJ 3, 62. [16] Virkki, 
A. K. and Bhiravarasu, S. S. (2019) JGRP 124, 3025-3040. 
[17] Costello, E. S. et al. (2020) JGRP 125, e2019jE006172. 

1257.pdf54th Lunar and Planetary Science Conference 2023 (LPI Contrib. No. 2806)


