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The rare earth elements (REEs) are a group of 17 

metallic elements designated “critical minerals” for 

economic and national security, essential to many ad-

vanced technological applications (e.g., magnets, bat-

teries, catalysts, smart phones, renewable energy tech-

nologies) [1,2]. The REEs are also important in the 

context of planetary exploration and in-situ resource 

utilization [2]. Thus, processes that may result in extra-

terrestrial REE enrichment are of key interest. Here, 

we investigate REE distributions at an excellent Ant-

arctic Mars analog site [3], and find relative REE en-

richments in a phyllosilicate-containing layer. 

Study Site: Sediments were collected from VXE-6 

pond, ~1 km upslope of hypersaline Don Juan Pond in 

the South Fork of McMurdo Dry Valleys’ (MDV) 

Wright Valley (Figs. 1–3). VXE-6 pond is a seasonal 

saline water body in an endorheic basin, fed by shal-

low groundwater [4]. The basin is bounded by moun-

tains of Devonian–Triassic orthoquartzite sandstone 

intruded by Jurassic dolerite dikes [5,6]. Mineral con-

stituents of the sediments include quartz, plagioclase 

feldspar, diopside, and amphibole at all depths (though 

of lower abundance at 4–7 cm depth), mica/chlorite at 

4–7 cm, and Ca sulfates at 8–10 and 12–15 cm [3]. 

 
Figure 1. (A) Location of MDV (red box) on the Ant-

arctic continent. (B) VXE-6 pond study site location 

(orange box) within MDV’s Wright Valley. Photo cred-

it: NASA EO-1, 2014; fig. modified from reference [3]. 

 

Table 1. Soil pit sample INAA rare earth elemental 

abundance data (Pr, Dy, Ho, Er data not collected). 

Green highlighting indicates layer of elevated REEs. 

 
Figure 2. Area around VXE-6 site (South Fork, Wright 

Val.). Photo credit: Everett Gibson, NASA-JSC, 1980.  

 

 
Figure 3. The seasonal VXE-6 pond and site of the soil 

pit. Photo credit: Everett Gibson, NASA-JSC, 1980. 

 

Methods: Rare earth element analysis of six VXE-

6 soil pit samples (from depth intervals of 0–1, 1–4, 4–

7, 8–10, 12–15, and 20–24 cm) was performed by In-

strumental Neutron Activation Analysis (INAA) at the 

University of Vienna, Austria. INAA instrumentation, 

precision, and accuracy can be found in [7,8]. 

Results: INAA-derived REE abundances for all 

soil pit samples are provided in Table 1, while chon-

drite-normalized concentrations are plotted in Fig. 4. 

At the 4–7 cm depth, REE concentrations are approxi-

mately equal to that of the average upper continental 

crust (and lower than that of Australian, North Ameri- 
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Figure 4. Chondrite-normalized (using values of [9]) 

REE abundances for all soil pit samples from the VXE-

6 pond site. Figure modified from reference [3]. 

 

can, and European shales), while REE abundances at 

all other VXE-6 soil pit depths are depleted relative to 

average upper continental crustal values [10].  

REE abundances at the clayey, mica-rich 4–7 cm 

soil pit depth are higher (for all rare earth elements 

analyzed) than measured abundances for any other 

sample depth (Table 1; Fig. 4). Namely, at the 4–7 cm 

depth, concentration of La is ~48% higher than at any 

other depth, Ce is ~36% higher, Nd is ~40% higher, 

Sm is ~47% higher, Eu is ~21% higher, Gd is ~26% 

higher, Tb is ~39% higher, Tm is ~15% higher, Yb is 

~38% higher, and Lu is ~42% higher (Table 1). 

Interpretation: Preferential concentration of REEs 

within the clay-like sediment layer at the VXE-6 brine 

pond site may be consistent with previous work docu-

menting that a majority of REEs in a weathering pro-

file are hosted in clay minerals and proto-clays [11]. 

Enrichments of the REEs in the clay/proto-clay layer at 

the VXE-6 site may be a result of the weak adsorption 

of REEs onto clay minerals—in fact, ion-adsorption 

deposits (or IAD clays) are the world’s dominant 

source of heavy REEs [12]. Despite being notable for 

its higher REE concentration relative to the other 

VXE-6 soil pit samples, it should again be noted that 

the 4–7-cm-deep clayey layer characterized here con-

tains REE abundances approximately equal to those of 

the average upper continental crust [10]. 

Implications for Mars and Planetary Resources: 

The VXE-6 pond site is a compelling analog for transi-

ent brines and bodies of water that may have existed in 

the martian past, and that may help explain mineralog-

ical assemblages of salts, sulfates, and phyllosilicates 

observed at and near the martian surface [3]. Aqueous 

processes resulting in the development of the clayey 

layer at the VXE-6 site are thus relevant not only for 

understanding the presence of phyllosilicates on Mars 

[3], but also—as demonstrated by this study—for un-

derstanding possible mechanisms of REE enrichment 

on Mars. Identifying REE sources is relevant to plane-

tary exploration, especially in-situ resource utilization.     
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