AN INCOHERENT SCATTER RADAR MISSION TO MARS (ISR2M). Majd Mayyasi¹, Phil Erickson², Frank Lind², Mary Knapp², Lenny Paritsky², John Swoboda², Josh Semeter³. ¹Center for Space Physics, Boston University, Boston, MA USA (majdm@bu.edu), ² MIT, Haystack Observatory, MA, USA, ³College of Engineering, Boston University, Boston, MA USA.

Abstract: We propose a lander-based implementation of incoherent scatter radar mission to Mars, building upon an instrument technique that has been extensively proven on Earth. By measuring the thermal properties of the Martian atmosphere in regions that orbiting spacecraft cannot explore, the ISR2M will determine the abundance and temperatures of ionospheric species that directly affect atmospheric composition, dynamics, and escape rates. This will allow identification of heating sources and sinks that determine Mars' atmospheric energy budget. Pragmatically, understanding the properties of the ionosphere will facilitate surface-to-space communications, particularly during entry, descent, and landing, and will aid in the interpretation of data from past and present orbiting spacecraft.