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Introduction: Long-wavelength patterns dominate 

the directional dependencies of lunar gravity (N) and 
topography models (H). Directional covariance ratios 
Rl(N), Rl(H), and Rl(N,H), where l is spherical har-
monic degree, are sensitive to the position of the coor-
dinate pole [1]. Computing these ratios at 40962 equal-
ly-spaced points on the lunar surface produces geo-
graphically-referenced spectral estimates, which can 
be visualized as degree-wise anisotropy maps (Fig. 1). 
Ratios close to unity indicate isotropy, while those 
greater or less than unity indicate zonal or sectoral 
anisotropy, respectively.  

Figure 1: Anisotropy maps for N=JGGRX1500E 
[2] and H=LOLA2600P [3]. Mollweide projections 
(central meridian 270°E, nearside-right, farside-left). 

 
Spectral and Spatial Patterns:  Topographic ani-

sotropy is found at l = 2, 3-5, 7, 12 and 14.  Gravity 
anisotropy occurs at l = 2, 3, 7, 11, and 21. Degree 2 
anisotropy maps depict triaxial ellipsoids aligned with 
the principal topographic and inertia axes. Gravity-
topography anisotropy is found at l = 3, 7, 14, 20, 23, 
and 29. The appearance of degrees 3 and 7 in all three 
metrics indicates significant lateral structure with 
wavelengths of ~3100 km and ~1500 km, respectively. 

Spatially the degree 3 zonal maxima coincide with 
the South Pole-Aitken (SPA) basin, while the degree 7 
maxima, at high latitudes, have no obvious physio-
graphic expression. Maxima at degrees 14 and 23 lie in 

Oceanus Procellarum and the nearside southern/farside 
northern highlands, respectively. 

Anisotropy at short wavelengths is broadband and 
extremal about the major a and minor c axes of the 
topographic ellipsoid (Fig. 2). Axis a is subparallel to 
the offset between the Moon’s center-of-figure and 
center-of-mass, and intersects the highland regions 
noted above. 

Figure 2: Anisotropy spectra for N=JGGRX1500E 
and H=LOLA2600P. Topographic ellipsoid axes a,b,c 
in blue, green, and red. CM-CF axis in cyan. 

   
Probability Distributions: Distributions of Rl(N) 

and Rl(H) are log-normal at all investigated degrees, 
consistent with random stochastic processes. The dis-
tribution of Rl(N,H) is also log-normal, except at l = 2, 
10, 11, and 12, where it is Cauchy-like. Thus, as ex-
pected, lunar gravity and topography models are well-
correlated stochastic processes, except at wavelengths 
of ~4400 km and ~870-1040 km. Older models exhibit 
Cauchy-like distributions at even higher degrees (Fig. 
3). Global sampling has reduced these errors to just 
those noted above. What is the source of these errors? 
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Modal cross-coupling and orbital mismodeling are 
likely culprits.  

Figure 3: Cross-spectra for models from the Clem-
entine [4] (red), SELENE [5] (blue), and GRAIL[2]-
LOLA[3] (black) missions. 

 
Tidal Deformation: Asymptotic extremes at l = 

10-12 coincide with zonal maxima at l = 3, 14 and 23 
(Fig. 4). Lateral density variations in the SPA basin, 
Oceanus Procellarum, and lunar highlands are poten-
tial sources of tidal torques, and contribute to the misa-
lignment of the principal inertia and topographic axes 
(Fig. 1). Unexplained degree 3 misfits have long been 
noted in lunar laser ranging studies [6,7]. 

Asymptotic extremes at l = 2 coincide with zonal 
maxima at l = 7. The presence of a fluid core boundary 
in the depth range 1360-1540 km [6] might result in a 
degree 7-8 body tide. Coincidentally, radial orbit er-
rors estimated from the LP75G covariance matrix peak 
in this range [8]. Similarly, mechanical decoupling in 
the mid-mantle might result in tidal deformation in the 
l = 10-12 waveband. Deep moonquakes occur at 
depths ranging from about 800 to 1100 km, with dom-
inantly tidal periods [9]. Localization physics should 
be included in tidal models. Ultimate resolution of 
these errors, however, will probably require including 
altimeters aboard a future GRAIL-like mission.  

Figure 4: Comparison of anisotropy maxima for 
N=JGGRX1500E and H=LOLA2600P. Modal cross-
coupling occurs between degrees 2-7, 3-10, 10-14, and 
12-23.  
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