
SURVEY OF THE LUNAR SOUTH POLE FOR CANDIDATE NASA ARTEMIS BASE CAMP SITES

C. G. Willard^{1,2}, E. R. Pimentel^{2,3}, and P. Lee^{2,4,5}; ¹University of Chicago (cgwillard@uchicago.edu), ²SETI Institute, ³Hamilton College, ⁴Mars Institute, ⁵NASA Ames Research Center.

Introduction: We present a survey of the lunar south pole identifying candidate sites for NASA's Artemis Base Camp (ABC) using a series of safety, logistical, and science access criteria. Drawing from NASA's Lunar Exploration Program Overview [1] and experience from Antarctic and Arctic polar research stations, e.g., McMurdo and the NASA Haughton-Mars Project, site criteria include: 1) Extended solar illumination (> 65% of the time); 2) Substantial directto-Earth (DTE) visibility (> 50% of the time); 3) Continuous flat Hab Area (slope < 5°, > 1 km²) for habitat structures; 4) Separate flat landing/launch Pad Area (slope $< 5^{\circ}$, 100 m in radius, and 1-3 km away), separated from the Hab Area by a topographic obstacle > 100 m in height, but linked to the Hab Area by a safely trafficable (< 10° slope) path; 5) Proximal access to water-ice bearing PSRs. We present our approach and discuss several end-member candidate ABC sites.

- 1. Solar Illumination: Quasi-permanently lit areas areas at the lunar pole allow for maximizing solar energy. A solar array area of $\sim 5000~\text{m}^2$ on the Moon will produce $\sim 200~\text{kW}$ average power if solar illumination is available 50% of the time ($\sim 0.04 \text{kW/m}^2$, similar to ISS). We set a >65% solar illumination threshold to add additional margin on this estimate. Using Python GDAL (Geospatial Data Abstraction Library), we identify all points with > 65% solar illumination at $> 75^{\circ}\text{S}$ latitude on a 120 m resolution solar illumination dataset [2]. We group these points into candidate sites 2.5 km in radius, centered on the point of maximum illumination serving as solar array location. This yields 65 candidate sites: 11 sites > 80% solar illumination; 23 sites at 70-80%; 31 sites 65-70%.
- 2. Earth Visibility: Maximizing Earth visibility time for direct-to-Earth (DTE) communications minimizes reliance on orbital comms. For each 2.5 km radius site above, we identify its maximum DTE visibility time percentage. Requiring DTE visibility > 50% eliminates 14 sites (mostly far side); 51 sites remain. It should be noted that several far side sites that have good DTE visibility.
- **3. Habitat Area:** From experience with terrestrial polar bases, the ABC will require a minimum of 1 km^2 of continuous flat area ($< 5^{\circ}$ slope) for habitat structures and some expansion options. Using a 20 m resolution slope map, 13 sites are found to offer $< 1 \text{ km}^2$ of flat area ($< 5^{\circ}$ slopes) and are eliminated. Additionally, requiring continuity of the 1 km^2 flat areas and safe accessibility of the local point of maximum illumination (path $< 10^{\circ}$ slope) eliminates 8 additional sites. 30 sites remain.

Figure 1: Candidate Artemis Base Camp Sites – This Study. Sites meeting our criteria 1-4. *Green:* Optimal sites with >75% solar illumination. *Orange:* Other viable sites with 65-75% solar illumination. Sites discussed here are named.

4. Landing/Launch Pad Area and Access: The

ABC will require at least one landing/launch Pad Area safely separated from the Hab Area. We applied five Pad Area requirements: a) $< 5^{\circ}$ slopes; b) ≥ 100 m radius area; c) 1-3 km away from Hab Area; d) a topographic barrier or elevation difference of > 100m between Pad and Hab areas; e) easy path (slope $< 10^{\circ}$) to Hab Area, if possible via a flat ($< 5^{\circ}$) Staging Area. Criteria a and b are derived from the NASA Human Landing System (HLS) Requirements Document (SRD) (requirements HLS-R-0071 & HLS-R-0021, resp.) [3]. Criteria c and d aim to reduce risk from engine exhaust ejecta (official requirements not yet available).

On a 20 m resolution slope dataset, we use a Python algorithm to apply criteria a, b, and c, yielding possible Pad Area locations; we then analyze each location in ArcGIS with a 20m LOLA DEM to apply criteria d and e. Four sites are eliminated; 26 remain (Fig. 1).

5. Accessibility to Water-Ice Bearing PSRs: We consider ready access to water-ice bearing PSRs (hereafter "H₂O-PSRs") to be a primary science requirement for any good ABC site. Lemelin et al. (2021) identify 169 H₂O-PSRs [5]. We conduct a Least-Cost-Path analysis, using QGIS, between each candidate site's Hab Area and each H₂O-PSR at three slope thresholds (10°, 15°, & 20°) on a 120m (low-res for computation time) slope dataset to estimate traverse distances (Fig. 2).

Several sites stand out with respect to H₂O-PSR accessibility: Sverdrup-Slater and Shackleton Ridge have the best overall H₂O-PSR access, *i.e.*, are closest

to multiple H₂O-PSRs and allow for shallower slope traverses. Cabeus-Haworth and Mt Kocher have above average H₂O-PSR access while being lower in latitude. Malapert and Nobile have excellent solar illumination and DTE visibility, but access to H₂O-PSRs from these sites is poor, requiring distant traverses via steep slopes.

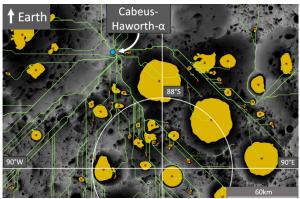


Figure 2. Access to H₂O-PSRs from the Cabeus-Haworth- α Site. Example H₂O-PSR access analysis for the Cabeus-Haworth- α candidate ABC site (*blue dot*) at 15° slope threshold. *Yellow polygons with red centroids*: H₂O-PSRs [5]. *Green paths*: minimum traverse distance from ABC site to PSR, via terrain of < 15° slopes.

Table 1: Candidate ABC Sites Discussed Below

Candidate ABC Site	Lat, Lon	Solar	DTE	Best Quality
Shackleton-deGerlache Ridge α	-89.48, -137.45	85%	58%	Solar/H2O-PSR
Sverdrup-Slater α	-88.81, 123.77	78%	61%	H ₂ O-PSR
Mt. Kocher β	-85.41, -114.92	77%	60%	H₂O-PSR/SPA B.
Cabeus-Haworth α	-86.37, -23.26	75%	82%	DTE/H ₂ O-PSR
Faustini β	-86.50, 80.79	66%	51%	H ₂ O-PSR

Case Studies: Several strong ABC candidate sites stand out in our study, depending on criteria priority. We discuss a few end-member cases here (Table 1).

Shackleton-deGerlache Ridge- α (SGR α): All the Shackleton rim sites (incl. Site 004 in [1]) were eliminated based on one or more criteria not being met, but the SGR α site (Site 001 in [1]) is on the connecting ridge between Shackleton and de Gerlache craters. It excels in solar illumination and access to H₂O-PSRs. DTE visibility, however, is only 58%.

Sverdrup-Slater- α (SS α): Similar to SGR α , with somewhat lower solar illumination, but more forgiving given closer and shallower access to H₂O-PSRs. It has the closest access to an H₂O-PSR of any high solar illumination (> 75%) sites at just 5.8 km away (Fig. 3).

Mt. Kocher- β (MK β): This site, presented by our team in [9], offers access not only to H₂O-PSRs, but uniquely to South Pole-Aitken Basin (SPA B) materials as well. It is located at the boundary between the SPA B's outer heterogenous annulus and its inner Mg-rich pyroxene annulus, thus allowing sampling of both [9].

Cabeus-Haworth- α (CH α): This site sits on the dividing ridge between Cabeus and Haworth craters. Its near-side location gives it > 80% DTE visibility and strong solar illumination; it has above average H₂O-PSR accessibility, while also being the only high solar illumination site with access to Cabeus crater, unique as it contains a proven diversity of volatiles [6] and is the site of a lunar paleopole [7].

Faustini- β (F β): This site on the rim of Faustini crater is at the lower threshold for solar illumination & DTE visibility, but has proximal access (< 10km) to an H₂O-PSR with > 150 ppm hydrogen content, *i.e.*, a high-value H₂O-PSR target [5].

Figure 3. The *Sverdrup-Slater-α* **candidate ABC Site.** *Yellow Sun Dot*: Site centered on local elevation peak with local max 78% solar illumination, 61% DTE visibility. *Green areas*: Hab & Staging Area options (< 5° slopes) *Red*: Pad Area, separated from Hab Area by topographic barrier. *Blue-Gray*: PSRs. The PSR at upper left is an H₂O-PSR [5]. *Light Green*: Low slope traverse path from Hab Area to H₂O-PSR: ~12 km at 10° slope threshold (~ 6 km option at 15°; not shown).

Future Exploration: These candidate ABC sites offer exciting opportunities for further characterization, scouting, and validation, and could be ideal targets for future NASA CLPS (Commercial Lunar Payload Services) missions combining high-priority lunar science and Artemis reconnaissance. Sverdrup-Slater-α, Faustini-β, and Mt. Kocher offer proximal H₂O-PSRs, ideal for CLPS-delivered robotic rover missions [8,9].

Acknowledgments: C. Willard & E. Pimentel were supported by NSF Research Experience for Undergraduates (REU) internships at SETI Institute; P. Lee by SETI and NASA via Coop. Agreement NNX14AT27A and was internship mentor.

References: [1] NASA's Lunar Exploration Program Overview (2020); [2] Mazarico E. et al. 2011, Icarus, 211,1066-1081; [3] NASA HLS Requirements Doc. (SRD), HLS-RQMT-001 2019; [4] Metzger P. 2020, LPI Lunar Dust Workshop, #2141; [5] Lemelin M. et al. 2021, PSJ, 2:103; [6] Colaprete A. et al. 2010, Science, 330, 463-468; [7] Siegler M. et al. 2016, Nature, 531, 480-484; [8] Willard C. et al. 2021, LSSW XII, CLPS Landing Sites; [9] Pimentel E. et al. 2021, LSSW XII, CLPS Landing Sites.