REVISITING ESTIMATES OF MARTIAN CRUSTAL HEAT FLOW: IMPLICATIONS FOR BASAL MELTING IN NOACHIAN MARS, K. R. Frizzell1, L. Ojha1, and S. Karunatillake2, 1Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, 08854, USA, (krf82@eps.rutgers.edu), 2Louisiana State University.

Introduction: The planet Mars likely had an active hydrosphere during the Noachian (> 4 Ga) eon, evidenced by the existence of geomorphological features like valley networks [1] as well as the detection of clays and aqueous minerals [2]. However, whether these features indicate surface water or groundwater is a point of contention [3,4]. The Faint Young Sun Paradox (FYSP) calls into question the plausibility of a warm and wet early Mars [5] since climate models struggle to elevate the surface temperatures above the melting point of water for a prolonged period via greenhouse warming alone [6].

This study examines the hypothesis that basal melting of thick ice deposits by geothermal heat during the Noachian was the primary source of liquid water on Mars [4]. On Earth, basal melting is responsible for the formation of subglacial liquid water lakes in various areas of the West Antarctic Ice Sheet [7], Greenland [8], and possibly the Canadian Arctic [9]. Subglacial channels, formed by geothermal heating under the Humboldt glacier in Greenland, even mimic Martian valley networks [8]. Geothermal heating may even be responsible for basal melting of the South polar layered ice deposits on Mars today [10].

After accretion and differentiation, the primary heat source in a planetary interior is from the radioactive decay of heat-producing elements (HPEs) like potassium, thorium, and uranium. With a much higher geo-thermal heat flow due to the billion-year half-lives of HPEs, basal melting of ice would have been a feasible mechanism for generating liquid water [11]. Therefore, constraining the heat flow on early Mars is vital to climate and geologic models alike, and will aid in understanding the evolution and astrobiological potential of the planet.

Background: We seek to assess whether basal melting from geothermal heat flow is a viable method for sustaining liquid water on Mars during the Noachian eon. Crustal heat flow has been calculated previously by combining elemental abundance maps of Th and K from the Mars Odyssey’s Gamma Ray Spectrometer (GRS) with cosmochemical estimates of U and gravity-derived crustal thickness maps [12,13]. These studies hinge on some fundamental chemical and physical assumptions. Our work will vary these assumptions to establish the bounds of the viability of basal melting on Mars [12,7]. We will simulate an array of potential scenarios and create numerous heat flow models of the Martian crust by varying the Th/U ratio, crustal HPE distribution, crustal thickness, and crustal density (see Table 1). We will be considering the crustal component of heat flow exclusively for this study.

Methods: We use elemental abundance maps of K and Th derived from PDS-archived GRS spectra projected cylindrically at 5° x 5° resolution. These are representative of the regional regolith chemistry to decimeter depths.

The crustal heat production rate was calculated using the following equation:

\[
Q_c = 0.9928 C_U H_{238U}\exp\left(-\frac{t_2}{t_{1/2}^{238U}}\right) + 0.0071 C_{Th} H_{232Th}\exp\left(-\frac{t_2}{t_{1/2}^{232Th}}\right)
+ C_{Th} H_{232Th}\exp\left(-\frac{t_2}{1.191 \times 10^{-4} C_{K} H_{40K}\exp\left(-\frac{t_2}{1.40K}\right)\right)
\]

where \(C_c\) is the concentration of radiogenic elements derived from the GRS chemical maps, \(H_c\) is the heat release constants, \(t\) is time, and \(t^{1/2}\) is the half-life of the radioactive elements. The equation was first evaluated at \(t = 0\) (present-day) to compare to measurements made by a previous study [12]. The crustal component of heat flow \(Q_c\) is calculated as the product of the crustal heat production \(Q_c\), crustal density \(\rho_c\), and crustal thickness \(T_c\).

Chemical Renormalization: HPE elements may sequester predominantly in primary (igneous) crustal units than secondary (sedimentary) units. Furthermore, sedimentary units where H, Cl, and S may concentrate are only a minor fraction of the crust compared to igneous (extrusive and intrusive) components. Accordingly, as done previously by [13,14], we renormalize each map pixel by:

\[
\frac{100}{(100 - w[H_2O] - w[Cl] - w[SO_4])}
\]

where \(w\) is a mass fraction as a wt%, and the values of \(w[SO_4]\) values are stoichiometric mass fractions derived from the S GRS chemical map. We also restrict the analyses to the mid-so-low latitudes, limiting the mass diluting and gamma-spectral effects of H on other elements as described in [15].

Error Analysis: Errors were propagated for the crustal heat production calculation by applying the scalar multiplication and addition equations by Taylor [16]. The GRS maps were the primary source of error, whereas the error on the heat release constants is negligible.
Variation in Th/U ratio: The mass fractions of U are calculated from a cosmochemically constant Th/U ratio of 3.8, as detailed in [12], but recent work shows that the Th/U abundances have been observed to be as low as 3.37 in terrestrial MORB basalts [17]. Therefore, we varied the Th/U ratio from 3 to 4 to see how it impacted crustal heat production during the present-day, which can be seen in both Fig. 1 and Fig. 2.

![Variation in Crustal Heat Production](image)

Figure 1: Median crustal heat production in the mid-low latitudes given different Th/U ratios (present-day).

Crustal HPE Distribution: The GRS instrument only measures the top decimeters of the Martian crust, which means the distribution of HPEs at depth is not known. Prior studies [12] have simplified the potential distribution into three regimes: homogeneous distribution, linear decrease, and exponential decrease. Prior work assumes a vertically homogeneous distribution of HPEs in the Martian crust, which is in contrast to the exponential decrease seen in the Earth’s crust [18]. This work seeks to analyze all three regimes of crustal HPE distribution in order to constrain potential variations in Martian crustal heat flow.

Crustal Density and Thickness: In order to calculate heat flow, crustal thickness is needed. Crustal density has been estimated from the density of meteorites [19], remote sensing [20], and in situ sampling [21], and gravity measurements can be inverted and measured against reference points to get crustal thickness [22]. The emerging understanding of crustal thickness at the InSight seismometer’s landing site will also provide a valuable calibration to our data [23]. We therefore intend to explore a wide range of crustal densities in this study (see Table 1).

![Image](image)

Figure 2: Crustal heat production for Th/U ratios of 3 (above) and 4 (below) evaluated at present-day.

Future Work: Future work will include the generation and analysis of multiple heat flow models based on the variation of the parameters defined in Table 1.

Acknowledgments: I would like to acknowledge the Planetary Data System (PDS) for providing the GRS chemical abundance maps, and Rutgers University and my advisor Dr. Ojha for supporting this project.