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Introduction: Boulders – here defined as rock
fragments resolvable in high-resolution orbital imagery
– abound on planetary surfaces, and form through a
variety of geological processes. Notably, rock
fragments are ejected upon meteor impact and
deposited elsewhere on the surface, where they
sometimes form secondary craters. By increasing the
density of impact craters, secondary impacts distort
crater statistics, and in doing so, bias estimated surface
ages. As the only directly measurable and quantifiable
portion of ejected materials (Fig. 1), impact-generated
boulders offer a unique opportunity to constrain the
size and velocity distribution of ejected rock
fragments, and thus, to correct for any biases in
planetary surface age determinations [1].

As hundreds of thousands of detectable boulders
are often associated with a single impact structure
[2–4], manual mapping of individual boulders is a
laborious and time-consuming task. Thus, automating
the boulder-detection process will be critical in the
acquisition of high-quality and significant boulder
statistics over large and varied planetary surfaces.
Three main boulder-detection algorithms have been
developed to date [5–7].

Two of these algorithms utilize the shadows cast by
boulders to detect boulders [5–6]. Specifically,
Golombek et al. (2008) [5] apply a segmentation
technique to extract contours of boulder shadows. An
ellipse is then fitted through each shadow outline to
infer both boulder height and width. Li and Wu (2018)
[6], conversely, developed a detection routine that
relies on brightness contrasts along the illumination
direction, using abrupt changes from bright to dark
pixels as a detection proxy. Both algorithms have been
tested over several locations on the Moon [6] and Mars
[5,8–9]. Such tests involve the comparison of
automated measurements of boulders and
corresponding cumulative fractions of surface
coverage for boulders of specific diameters (plotted in
logarithmic space) with manually derived ones – an
approach that tends to inherently minimize potential
differences between both datasets – or through
comparisons of measured and predicted surface areas
covered by boulders, which, without groundtruthed
data, does not permit to evaluate performance
(accuracy, precision, recall). Furthermore, the presence
of primary and secondary impact craters casting
shadows in our regions of interest would present a

significant challenge to shadow-based
boulder-detection algorithms. Because Golombek et al.
(2008) [5] were most concerned with landing-site
characterization, which are highly skewed towards flat
terrains, topographic roughness was not a major
concern for their detection algorithm. Although the
method of Li and Wu (2018) [6] may permit to discern
boulders from other shadow-casting landforms, it is
still expected to yield a significant number of false
detections in rough terrains, as brightness contrasts
along crater rims resemble those surrounding boulders.

Finally, Bickel et al. (2019) [7] made use of a
Convolutional Neural Network (CNN) to automatically
detect rockfalls. CNNs are powerful deep supervised
learning models that use images of an object of interest
as input to automatically classify similar objects in a
new set of images [10–12]. Specifically, Bickel et al.
(2019) [7] trained the RetinaNet CNN object detection
model to generate a global map of rockfalls of the
lunar surface [13]. However, because they were
focused on the mapping of rockfalls, their detection
algorithm relies on the presence of boulder tracks and
was not trained to detect boulders that are not
associated with boulder tracks.

Our goal is to develop and train a versatile
boulder-detection algorithm using the instance
segmentation Mask R-CNN model architecture [14]
that enables the characterization of boulder size and
shape distributions on planetary surfaces.

Methods and Preliminary Results: Detection of
boulders using Mask R-CNN requires training of the
algorithm with a comprehensive dataset. To
circumvent some of the issues encountered by
rule-based detection algorithms and detect boulders
reliably in a multitude of surface conditions, it is
important for the training dataset to include images
with different illumination conditions, boulder sizes,
and density. As a first step towards training the Mask
R-CNN model to detect boulders on planetary
surfaces, we acquired a large training dataset of
boulder sizes and shapes from high-resolution, Lunar
Reconnaissance Orbiter Camera (LROC) Narrow
Angle Camera (NAC) [15] images (~0.50 m/pixel) of
the 3.8 km Censorinus impact crater (0.4°S, 32.7°E,
Fig. 1). Censorinus is one of the freshest impact craters
on the lunar surface, making it an ideal first target.

Manually mapping boulders from orbital imagery
present several challenges. Whereas the identification

1835.pdf53rd Lunar and Planetary Science Conference (2022)



of large boulders located near crater rims is relatively
trivial (Fig. 2a), the bulk of boulders have sizes close
to the resolution limit (Fig. 2b). The size of boulders
decreases abruptly away from the crater rim (Fig. 2b)
[4] as is expected from extensive fragmentation of
ejected materials upon impact and lower ejection
velocities for larger fragments. As fragmented boulders
typically reflect considerably more light than
background regolith (Fig. 2c), they often cause an
oversaturation of pixels, and the blurring of
neighboring pixels, yielding poorly defined boulder
contours (Fig. 2d). In such conditions, and near the
resolution limit, the distinction of single boulders from
multiple tightly-spaced boulders is challenging. In
addition, significant variations in the degree of boulder
burial are observed across the rim and within the crater
(Fig. 2e,f). Therefore, depending on the degree of
burial, fragmentation state, and brightness contrast,
even a 20x20 pixels boulder could be challenging to
characterize accurately in some instances (Fig. 2e,f).

With these constraints in mind, we focused on
boulders defined as any rock fragment larger than 5
pixels in width or length, regardless of its degree of
burial. We traced the exact outline of 6,000 boulder
labels (as of January 2022) using the QGIS software.
To date, we focused on NAC images with solar
incidence angle between 0–40o to minimize shadows.

Future Work: In upcoming months, we will
continue gathering training data around impact craters
on the Moon, Mars, and asteroids to build a versatile
training dataset for Mask R-CNN to detect boulders
automatically on planetary surfaces. At the conference,
we will present all data acquired to date and a
preliminary analysis of the spatial distribution of
boulder sizes and shapes around impact craters on
multiple planetary bodies.
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Fig. 1 (a) LROC NAC images of Censorinus crater on
the Moon, with boulders labeled to date (green). Red
boxes outline locations of panels in Fig 2 (a–f).

Fig. 2 (a) Large boulders located near the Censorinus
crater rim. (b) Field of small boulders with diameters
near the image resolution limit. (c,d) Fragmented
boulders. (e,f) Partially buried boulders.
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