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Introduction: Near-Earth Cb-type asteroid 

(162173) Ryugu is a rubble pile asteroid made of 
fragments of the original parent asteroid [1-5]. It is 
possible that the fragments from various depths of the 
original asteroid are on the surface of the present-day 
Ryugu. Therefore, samples collected from Ryugu are 
expected to retain formation and evolution history of the 
interior of Ryugu’s parent asteroid. 

In this study, we will focus on understanding the 
early history of Ryugu’s parent asteroid. For this 
purpose, we need to understand: 1) when and where in 
the solar nebula Ryugu’s parent asteroid formed, 2) the 
original mineralogy and the abundance and composition 
of water-rich ice in the accreted materials, 3) how these 
materials chemically and mineralogically evolved, and 
4) how the parent body was destroyed by a catastrophic 
collision.  

Samples and Experiments: We analyzed sixteen 
coarse Ryugu particles 1 ~ 8 mm in size (pictures shown 
in [6]): six from the 1st touch down site and ten from the 
2nd touch down site.  

We measured reflectance spectra of UV [7], visible 
[8], near infrared [9], mid to far infrared [10, 11] 
wavelength range. In addition, we used infrared nano-
spectroscopy (AFM-IR) to image fine structures of 
organics and phyllosilicates [12, 13]. We performed X-
ray [14] and infrared [15] tomography in micron- to 

nano-scale to understand the internal 3D structure of 
individual samples. Fe valence state and magnetic 
structure were investigated by Mössbauer spectroscopy 
[16] and electron holography [17], respectively. Muon 
measurement [18] and synchrotron XRF tomography 
[19, 20] were performed to see bulk abundance and 3D 
distributions of major- and minor-elements. Physical 
and thermal properties were measured [21, 22] to 
understand the response to shock and heating. 

Individual Ryugu coarse samples were cut by Xe-
FIB or wire-saw to expose particular objects or textures 
on the surface based on 3D structure and element 
distribution [23]. FE-SEM/EDS and FE-EPMA/WDS 
analysis were made on polished sections [24]. TEM 
observation was made to see microstructures and to 
compare with carbonaceous chondrites [25-28]. 
Mineralogical comparisons were also made between 
Ryugu samples and AMMs [29] and IDPs [28]. TOF-
SIMS analysis was carried out to analyze fluid 
inclusions in a pyrrhotite single crystal [30]. 

Based on the obtained bulk composition, we 
performed chemical modeling of aqueous alteration of 
Ryugu’s parent asteroid [31]. Numerical simulations 
[32-34] to reproduce thermal history and impact-
induced destruction of the Ryugu’s parent asteroid were 
also carried out using mineralogical and physical 
properties of the Ryugu samples. The results of all 
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analyses and simulations are described in [35] and a 
summary is shown below. 

Results and discussion: Based on the presence of 
CO2-bearing water in fluid inclusions in the pyrrhotite 
crystal [30], Ryugu’s parent asteroid formed outside the 
CO2 and H2O snowlines. Remanent magnetization was 
detected [17], implying that the solar nebula might have 
still been present when the carrier phase of the magnetic 
field, i.e., small magnetite, formed in Ryugu’s parent 
asteroid. 

Muon analysis of ten Ryugu samples revealed the 
abundances of C, N, Na, Mg, S, and Fe, relative to Si, 
to be close to CI chondrites, while O is deficient 
compared to CI chondrites [18]. X-ray CT analysis 
showed that all sixteen Ryugu particles are composed of 
fine-grained material, with no chondrules nor CAIs 
larger than 100 μm in size. FE-EPMA observation 
showed that Ryugu samples are breccias, consisting of 
many small rock fragments of different compositions, 
lithologies, and histories. The most common lithology 
includes Mg-rich saponite and serpentine, dolomite, 
breunnerite, pyrrhotite, magnetite, and hydroxyapatite, 
as main constituents. The mineralogy of this major 
lithology supports the classification of Ryugu samples 
as CI chondrites [36], which experienced extensive 
aqueous alteration in Ryugu’s parent asteroid. 

In contrast, some fragments show a different 
lithology, containing a higher abundance of anhydrous 
silicates (olivine + low-Ca pyroxene), Ca carbonate, 
phosphides, together with pyrrhotite, magnetite, and 
poorly-crystalline phyllosilicates [24, 26]. These 
fragments experienced a lesser degree of aqueous 
alteration. According to the chemical modeling of 
aqueous alteration [31], the mineral composition of this 
less-altered lithology formed at a low water/rock mass 
ratio of < 0.3, probably at shallow depths within the 
parent asteroid [34], while the dominant more-altered 
major lithology was produced at a higher water/rock 
ratio of 0.3–0.9 in the interior of the asteroid. 

Mechanical and thermal properties are similar, but 
not identical, to CI and CM carbonaceous chondrites [21, 
22]. Numerical simulations of the thermal history of 
Ryugu’s parent asteroid revealed temperature 
distribution and its changes with time [34], and those of 
impact disruption processes show pressure and 
temperature distribution upon impact and size 
distribution of broken fragments [33]. 

Based on evidence derived from analyses and 
simulations stated above and O isotopic analysis [37], 
we infer the early history of Ryugu’s parent asteroid as 
follows. It formed at 1.5–2.5 Myr after CAI formation 
with a water ice/rock ratio of 0.3–1.0 in a cold region of 
the solar nebula. Water ice melted 3 Myr after CAIs and 
aqueous alteration occurred and gradually changed the 
initial anhydrous and reduced mineralogy to a largely 
hydrous and partially oxidized mineralogy. 
Approximately 5 Myr after CAIs, Ryugu material at all 
depths experienced the highest temperature (<~100°C), 

and aqueous alteration continued. A catastrophic impact 
disrupted Ryugu’s parent asteroid at ~1 Gyr ago [2], and 
some fragments originating far from the impact point 
were reassembled to form present-day Ryugu.  
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