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Introduction: Bennu is a near-earth asteroid having 

a spheroidal spinning-top shape [1]. NASA’s Origins, 
Spectral Interpretation, Resource Identification and 
Security-Regolith Explorer (OSIRIS-REx) mission [2] 
revealed that this B-type asteroid [3] is covered by 
hydrated and dark (low albedo) surface materials [e.g., 
4]. The observed high-porosity is interpreted to indicate 
its rubble-pile structure [5].  

Despite its small-size (<500 m in diameter), high-
resolution images (better than several cm per pixel) 
from OSIRIS-REx Camera Suite (OCAMS) [6] 
resolved an unexpected surface diversity of Bennu [4] 
with a variety of topographic/geologic features, 
including an equatorial bulge, longitudinal ridges and 
troughs, craters or crater candidates with circular 
depressions, and lineaments [5, 7]. 

The existence of abundant regolith and fragmented 
rock particles (boulders, cobbles, and pebbles) may 
suggest the influence of impact or thermal processes 
occurring on the surface after its formation [8]. Images 
obtained with OCAMS show the signs of other 
geological processes. Those include particle ejections 
from the surface due to its low escape velocity [9], and 
mass wasting, where the surface materials move to 
topographic lows. These would lead to the 
accumulations of clusters of boulders, depletion of 
small craters, and/or infilling of large craters [10]. 
Analyzing the sizes and spatial distributions of rock 
particles and regolith of Bennu can thus contribute to 
understanding the origins and evolutions of this diverse 
and active surface. 

Identification of Rock Particles: Previously, 
particles identification was manually conducted by 
fitting polylines to their longest axis dimension [11], or 
ellipses to their shapes [12]. Boulder outlines are 
generally blurred and difficult to distinguish from the 
background due to irregular particle shapes, overlapping 
particles, and image resolution limits, making the 
analysis time-consuming and challenging, which will 
result in a lack of reproducibility. Therefore, a method 
to analyze numerous rock particles with objectivity and 
reproducibility should be established. Here, we develop 
a deep learning-based computational approach for the 
automatic identifications of rock particles. Then we 
apply this method to boulders in Tlanuwa Regio, a large 
boulder-rich area on Bennu’s surface, and discuss its 
origins and evolutions. 

Tlanuwa Regio: The global rock abundance on 
Bennu’s surface is not uniform [7]; there are 
concentrations of boulders in certain places, and 
Bennu’s surface can be classified into at least two 
geologic units, smooth and rugged units [13]. Tlanuwa 
Regio is a rugged region located in 9.0–66.2° S and 
223.13–300.26°  E having an area of ~0.928 𝑘𝑘𝑚𝑚2. It 
includes the area where rocks are the most abundant on 
Bennu [7], and thus we choose the Tlanuwa Regio to be 
studied with our algorithm. 

Automatic Identification Algorithm: To obtain 
information on the size, shape, position, and orientation 
of each particle, we design a method to perform instance 
segmentation tasks, which can distinguish individual 
particles from the background in pixel level (pixel-wise). 
Mask R-CNN with ResNet-101 [14] is used for the 
model, and hyperparameters are optimized to identify 
numerous rock particles in grayscale images, which is 
entirely different from general object detection. 

Training of The Model: For the effective 
identification of rock particles, lighting conditions of 
images are the most critical; solar phase angles should 
be appropriate (~30-50°) and emission angles (angles 
between a spacecraft and a normal vector of the surface) 
should be small (<40°) to determine outlines of particles 
from the direction perpendicular to the surface (nadir). 
To fulfill this requirement, OCAMS images obtained 
during the Baseball Diamond (BBD) imaging campaign 
in the Detailed Survey mission phase [2] are selected to 
train the model. 26 images are prepared for a training 
dataset, while 8 images are prepared for a validation 
dataset. Additionally, 24 images of Tlanuwa Regio are 
used as a test dataset for evaluating the accuracy of the 
model. 

By carefully identifying each rock profile with a 
manual analysis, we finally obtain >40,000 outlines of 
rocks. With this dataset, the model is trained. 

Evaluation of the Model: Fig. 1 shows an example 
of automatic identification. To evaluate the trained 
model, we use three metrics: precision, recall, and F-
value. They are defined as 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑝𝑝/(𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑛𝑛), 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑝𝑝/(𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑝𝑝) , and 𝐹𝐹-𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) , where 𝑇𝑇𝑃𝑃  is the true 
positive, which shows the number of objects estimated 
as a particle by both the automatic/manual analyzes, and 
𝐹𝐹𝑃𝑃  is the false positive, which shows the number of 
objects automatically estimated as a particle, but not 
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manually. 𝐹𝐹𝑛𝑛 is the inverse of 𝐹𝐹𝑃𝑃. The model achieves a 
recall of 81.0 %, precision of 80.3 %, and F-value of 
80.6 %. Note that particles with <12 pixels in diameter 
are excluded from the results in both automatic/manual 
analysis, because small particles are often blurred 
mainly due to image resolution limits, which makes 
difficult to determine the outline even for manual 
analysis. 

Boulder Analysis in Tlanuwa Regio: For 
identifying rock particles in Tlanuwa Regio, 80 
OCAMS images (~5 cm/pix) obtained during the BBD 
mission phase are prepared. By using our algorithm, 
>100,000 particles are identified automatically. Each 
image has overlapping areas with other images, so we 
review overlapping identifications on a 217,032-facet 
shape model (v20 PTM) derived from OSIRIS-REx 
Laser Altimeter (OLA) [15]. Finally, ~20,000 particles 
are recorded, and they are mapped on the shape model 
by using Small Body Mapping Tool (SBMT) [16] (Fig. 
2). 

Size/Shape Distributions and Orientation: We 
calculate the cumulative size-frequency distribution of 
rock particles in Tlanuwa Regio. It is fitted with power-
law distribution having a power-law index of -2.2. 

By measuring the largest (𝑎𝑎) and second the largest 
(𝑏𝑏 ) dimensions, the ratio of 𝑏𝑏/𝑎𝑎  is derived for each 
particle, showing the mean ratio of 0.63. This result is 
consistent with the value of Eros, Itokawa and Ryugu 
[17], which suggest the origins of particles can be 
attributed to impact processes compared to the shape 
distribution obtained in laboratory impact experiments 
[18]. 

The orientation of each particle is also obtained (Fig. 
2). Here 0°  shows the longest axis is parallel to the 
direction of the equator, and the orientation is defined 
counterclockwise from this origin. The global 
orientation trend in Tlanuwa Regio shows that most 
particles have orientations parallel to the equator. With 
the hypothesis that the longest axis is preferentially 
oriented transverse to the gravel migration [19], and 
Bennu’s geopotential trend, where the current potential 
is the highest at the poles and the lowest at the equator 
[20], this trend can indicate that surface materials have 
dominantly moved from the midlatitude to the equator 
in Tlanuwa Regio. 
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Fig. 1. OCAMS image (left: ocams20190405t182630s 
769_pol_iofl2pan_83523) and automatically identified 
particles (right). 
 
 

Fig. 2. Mapped rock particles and the global orientation 
trend (lower left). 0° shows the longest axis is oriented 
in East-West direction, and data is symmetrical to 
0°– 180°. 
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