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Introduction: solar radiation dominates the heat balance
incident on the surface of airless planetary bodies. Surface
roughness affects the equilibrium temperature distribution by
changing the solar incidence angle local to each slope. In or-
der to compute surface temperatures and directional emissivity
from rough topographies, thermophysical models usually em-
ploy computationally expensive techniques such as ray-tracing
[1, 2, 3, 4, 5, 6]. Here we assume Lambert scattering to de-
rive closed form expressions for the incident flux and equilib-
rium surface temperature distribution of sunlit rough surfaces,
assuming their slope distribution is Gaussian. Using these dis-
tributions, we derive closed-form expressions for the surface
infrared brightness as a function of emission angle when the
Sun is near the zenith and use them to compute the roughness
of the lunar surface on lateral scales of ∼ 1 cm. Our meth-
ods may be expanded for unresolved, airless planetary bodies
in approximate thermal equilibrium such as low thermal inertia,
slowly rotating asteroids.

Theory: A Gaussian random surface is a common statisti-
cal model for rough topographies that assumes the components
of the gradient vector, p, q, are normally distributed with zero
mean and root mean square ω [7, 8, 1]. The slope angle may be
calculated as tanα =

√
p2 + q2, and the slope aspect (com-

pass direction) is tan θ = q/p. Employing change of variables
[9], we may compute the probability density function of the
surface slope angles,

fα(α) =
tanα

ω2 cos2 α
exp

(
− tan2 α

2ω2

)
(1)

and the probability density function of slope aspects,

fθ(θ) =
1

2π
. (2)

The local solar incidence angle, defined as the angle between
the Sun and the slope normal vector, is given by,

cos Θ = cos z cosα+ sin z sinα cos(θ − as). (3)

where z is the solar zenith angle, as is the solar azimuth angle
and θ is the slope aspect. The flux reaching each slope on the
surface depends on the cosine of the incidence angle and the
distance to the sun r,

F =
S0 (1−A)

(r/1 AU)
2 cos Θ ≡ β cos Θ (4)

where S0 = 1367 Wm−2 is the average solar constant at 1AU
and A is the surface albedo. Finally, the equilibrium tempera-
ture may be derived from the incident flux assuming the surface
is a black-body with emissivity ε. Throughout this work, we as-
sume radiative equilibrium, A = 0.1 and ε = 0.95 as example
values for the bond albedo and emissivity of the lunar surface.

Results: Temperatures and Directional Emissivity at local
noon: At the local noon, the solar zenith angle z is small and
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Figure 1: The angles and vectors defining the surface slope dis-
tribution and illumination conditions. ~N is the surface normal,
α the slope angle, θ the slope aspect and z the solar zenith an-
gle.

Eq. 3 is the same as Eq. 1 with α = Θ. In this case, it is
straightforward to obtain closed form expressions for the inci-
dent solar flux distribution,

fF0
(F ) =

β2

ω2F 3
exp

(
− 1

2ω2

β2 − F 2

F 2

)
, (5)

and the equilibrium temperature distribution,

fT0(T ) =
4

ω2ρ2T 9
exp

(
− 1

2ω2

1− ρ2T 8

ρ2T 8

)
. (6)

where we defined ρ ≡ σε/β. By integrating Eq. 6, we may
obtain a useful closed form expression for the mean equilibrium
temperature of sunlit rough Gaussian surfaces,

T̄0 =
1

(2ω2ρ2)
1/8

Γ

(
7

8
,

1

2ω2

)
exp

(
1

2ω2

)
(7)

In Figure 3 we show the mean equilibrium surface temperature
computed by our analytic model relative to a numerical model
that includes ray casting. As expected, our model becomes less
accurate when the Sun is not near the zenith. However, for
low-moderate zenith angles and surface roughness values our
model error is contained under 2%. We now use these distri-
butions to calculate the mean infrared brightness as a function
of emission angle B̄(ψ) by averaging the total energy reaching
the observer from all surface slopes, normalized and divided by
the projected area,

B̄(ψ) =

∫
B cosψ′dA∫
cosψ′dA

. (8)

where ψ′ is the angle between the slope normal vector and the
observer. For a Gaussian surface illuminated from zenith we
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find a closed-form solution for this integral,

B̄ (ψ) = B̄(0)−
B̄(0)− B̄

(
π
2

)
B̄
(
π
2

) B̃ (ψ) , (9)

where,

B̃(ψ) =
B̄(0)

2πIω2

1

1 + Λ(cotψ)
·

tanψ + cotψ

2
exp

(
1− cot2

4ω2

)
·[

K0

(
1 + cot2

4ω2

)
−K1

(
1 + cot2

4ω2

)]
.

(10)

and,

B̃
(π

2

)
=

√
2π

ω2

B̄(0)

4πIω2
exp

(
1

4ω2

)
[
K1

(
1

4ω2

)
−K0

(
1

4ω2

)] (11)

and where Kν(x) is the ν’th order Modified Bessel Function
of the Second Kind and Λ is the shadowing function due to
Smith [8]. In Figure 2 we show two sets of measurements of
lunar infrared brightness obtained through telescopic observa-
tions [10] and Diviner measurements [5]. Using non-linear re-
gression we fit our analytic model to these directional infrared
brightness measurements to find the root mean square slope ω.
Our measurements agree well with previous measurements at
the 0.1− 1 mm lateral scale, [11].

Temperature Distribution for any Solar Zenith Angle: In the
general case, Eq. 3 can no longer be reduced as in the special
z = 0 case and deriving the incidence angle, flux and temper-
ature distribution requires solving an integral with no-closed
form solution,

I =

∫ b

a

[(x− a) (b− x)]
− 1

2

x3
e−

1
2ω2x2 dx (12)

where a = cos(Θ − z) and b = cos(Θ + z). Here we obtain
an asymptotic approximation to the integral using Laplace’s
method [12] which is accurate for small ω2 (low roughness)
and Θ 6≈ z (sun-facing surface slopes). Using this approxi-
mate closed-form solution and change of variables, we obtain
the equilibrium temperature distribution of sunlit Gaussian sur-
faces for any solar zenith angles,

fT (T ) ≈4ωρT 3

√
2π

√
1 + τ2 cot z

τ1(
1 +

1

ω2τ3

)
exp

[
1

2ω2

(
1− 1

τ21 τ3

)]
,

(13)

where
τ1 =

√
1− ρ2T 8

τ2 =
ρT 4 cot z

τ1

τ3 = τ21 (1 + τ2)
2

sin2 z.

(14)

Figure 2: (a) Mean surface temperatures computed by our an-
alytic model compared to the mean surface temperature com-
puted by a numerical model. (b) Residual plot for (a).

Figure 3: We use our model to invert for the bidirectional root
mean square slope (magnitude of surface roughness) at the lat-
eral scale that affects the thermal phase function. (a) Telescopic
observations. (b) Diviner measurements.
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