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Introduction: Compact instruments are of high 

value for planetary science missions with strict tech-

nical constraints (e.g., mass, volume, and power). Fur-

thermore, programmatic constraints (e.g., cost, sched-

ule, risk, complexity, and heritage) are of equal im-

portance to ensure the success of a mission. CIRiS is a 

compact infrared camera—designed, built, and tested 

at Ball Aerospace—that incorporates an uncooled mi-

crobolometer and carbon nanotube calibration sources 

to minimize technical and programmatic constraints 

while providing sufficient performance to meet plane-

tary science requirements. The CIRiS instrument has 

been successfully integrated into a 6U CubeSat config-

uration (figure 1). Currently berthed at the Internation-

al Space Station, the upcoming deployment is planned 

to mature the TRL and establish heritage for future 

planetary science applications.  

 

 
Figure 1. A Ball Aerospace technician stows the solar 

panels on CIRiS to complete the final assembly before 

shipment on September 25th, 2019. 

 

Preliminary Results: 

Ground Testing: A TVAC campaign has provided 

characterization results in a relevant environment to 

mature the instrument system to TRL-5 and calibration 

result with a well-controlled, well-calibrated NIST 

blackbody (e.g. figure 2) to produce simulated on-orbit 

performance results (e.g. figure 2) [1,2]. In addition, 

pre-delivery images verify the qualitative image per-

formance of the completed system (figure 3). 

On-orbit Results: CIRiS is planned to be deployed 

from the International Space Station  in early 2020. 

Preliminary results will be discussed, pending success-

ful deployment. 

 
Figure 2. Transfer of raw NIST-traceable radiance. 

 

 
Figure 3. Pre-ship images of Rocky Mountains (back-

ground) and hospital parking garage/helipad (fore-

ground) show camera focus, band divisions, and both 

geologic and anthropogenic thermal feature identifica-

tion. 

 

Technology Readiness Level (TRL):  The prima-

ry mission of CIRiS is to raise the readiness of com-

pact, high-performance technology (microbolometer 

infrared cameras with carbon nanotube blackbody 

sources) in the space environment from TRL 5 to 7 and 

to reduce risk to future missions [3]. Without full radia-

tion testing of the system on-ground, we do not claim 

TRL 6 prior to launch. This TRL maturation provides a 

system prototype demonstration in-space of the CIRiS 

baseline system. Planetary science has the unique con-

straint that the “fly-learn-refly” paradigm does not typ-

ically apply; there is usually only one opportunity to 

complete a mission [4]. Future missions can use the 

baseline CIRiS instrument (planned to soon be TRL-7). 

 

Planetary Science Applications: The longwave 

infrared (LWIR: ~7-15 μm) has been used for measur-

ing planetary surface heat flux, deriving surface tem-

perature, thermal inertia, particle size, mapping miner-

alogy, and detecting atmospheric gases with a number 
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of planetary instruments (e.g., CIRS, Diviner, TES, 

THEMIS, PFS, etc) [5-9]. These instruments have 

yielded exceptional results for mid to large scale mis-

sions that optimize performance with budget for larger 

aperture size, advanced thermal control systems, and 

mass/monetary budget for radiation-hardening of elec-

tronics and shielding. High-risk missions, missions to 

uncharted regions, in-situ measurements, and multi-

point measurements have all been identified as condi-

tions for flying CubeSat-class instruments [4]. CIRiS, 

small, affordable, and reliable, is a candidate for these 

types of missions. 

Deployable Ride-share: Flagship missions have 

historically carried deployable probes to conduct aug-

mented science objectives. More recently, the MarCO 

CubeSats, launched with the InSight to Mars, proved 

that standardized CubeSats could be deployed as au-

tonomous systems to enhance the scientific/engineering 

return of the parent mission [10]. Deployable CubeSats 

offer opportunities to probe environments unobtainable 

to the host spacecraft-instruments (e.g., expendable 

probing of plumes, atmospheres, and surfaces; investi-

gation of high-risk, high-reward ancillary targets; and 

extension of simple, multi-point measurements signifi-

cantly augment the science return as a network). 

Modular Design: Having completed and delivered 

baseline build, CIRiS can be adapted for unique mis-

sion requirement (e.g., see L-CIRiS, recently selected 

for the CLPS program [11]).  

 

 
Figure 4. Launch of spaceflight CRS-19 (Dragon-

Falcon 9) to the International Space Station on De-

cember 5th, 2019. 

 

Planned Engineering Enhancements for Plane-

tary Science: For unique environmental requirements, 

Ball is planning engineering enchantments to augment 

CIRiS for Planetary Science missions. 

Radiation Engineering: Radiation engineering is 

planned to be performed to enhance the radiation hard-

ness and to guarantee performance on-ground for mis-

sions to harsher environments to reduce risk. 

Planetary Protection: To comply with specific tar-

get body mission requirements relating to planetary 

protection, analysis and protocols are planned to be 

applied to enhance the contamination safety. 

Environmental Testing: TVAC testing both to 

characterize and to calibrate the instrument system is 

standard practice and is customizable for the mission 

environment to quantify performance [1]. 

Mission Assurance: Mission Assurance capabilities 

are planned to be applied, as specified, for the relevant 

mission class to reduce risk. 
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