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Introduction:  Since its discovery in Algeria in 

1990, the Acfer 094 ungrouped carbonaceous chon-
drite has been considered one of the most primitive 
chondrites in our meteorite collection. It contains 
abundant presolar grains and has undergone almost no 
thermal metamorphism [1, 2]. A notable feature of 
Acfer 094 is the occurrence of aggregates of extremely 
16O-poor magnetite-pentlandite (∆17O ≈ 85‰ [3]) 
named cosmic symplectite (COS) [4]. COS is the best 
candidate among all known planetary materials to rep-
resent an extremely 16O-poor water reservoir in the 
solar nebula, which is invoked, for example, to explain 
the evolution of 16O-poor planetary materials from the 
16O-rich Sun (e.g. [5]). CO self-shielding models pre-
dict that this heavy water reservoir resides in the outer 
solar nebula [e.g., 6].  

How did the Acfer 094 parent body (A094-PB) ac-
crete the signature of this outer nebula water reservoir? 
There are two likely scenarios: Scenario 1) COS 
formed in the solar nebula and A094-PB later accreted 
this phase [3]. Scenario 2) A094-PB accreted in the 
outer Solar System with isotopically heavy water ice 
incorporated into its matrix [7], then COS formed after 
melting of this ice. In this study we distinguish be-
tween these two hypotheses by petrographic and O 
isotope studies of Acfer 094 COS and matrix.  

Methods: Petrographic observations and SEM-
EDS analyses of an Acfer 094 thin section (USNM 
72337) were performed using a Tescan Mira3 FEG-
SEM. Oxygen isotopes of COS grains were measured 
with the Wash U NanoSIMS using a ~1 pA primary 
beam focused to ~100 nm. We acquired 3x3 µm scan-
ning ion images of 16O−, 17O−, and 18O− using EMs. 
Oxygen isotope ratios of COS were normalized to 
magnetite grains found in a dark inclusion of Acfer 
094, assumed to be δ17,18O ≈ 5 ± 4‰ [8]. Other analyt-
ical conditions are similar to [9]. Oxygen isotopes of 
Acfer 094 matrix were measured on the University of 
Hawai‘i Cameca ims 1280 ion probe using a <3 pA 
primary Cs+ beam focused to ∼300 nm. We acquired 
128×128 pixel, 20×20 μm scanning ion images in 
monocollection mode for 16O−, 17O−, 18O− , 16OH− , 
24Mg16O−, 27Al16O−, and 56Fe16O− on the mono-EM. 
Other analytical conditions are similar to [10].  

Results and Discussion: COS grains are dispersed 
throughout the matrix and show elongated shapes of 
~10−30 µm in length and ~5−10 µm in width (Fig. 1a). 
They are associated with fractures and are occasionally 
surrounded by a rim of fibrous sulfide (Fig. 1b). We 

measured δ18O and δ17O values ranging from 160 to 
210‰, mostly consistent with previous measurements 
[3] (Fig. 2). 

 
Figure 1. BSE images of elongated COS grains within 

Acfer 094 matrix (A) free of sulfide and (B) surrounded by a 
rim of fibrous sulfide. Most of the COS are associated with 
fractures. 

The occurrence of elongated COS and sulfide asso-
ciated with fractures is comparable to fracture filling 
veins of secondary assemblages (e.g., carbonate or 
sulfide) previously reported in aqueous altered CM 
chondrites and CM1-like clasts from the Kaidun mete-
orite, respectively [11]. These veins are considered to 
be strong evidence of Ca- and (Fe, S)-bearing fluid 
circulation on the asteroidal parent body. We thus infer 
a similar mechanism for the formation of COS, with S 
originating from S-bearing phases accreted by A094-
PB. Since Acfer 094 contains ultra-porous lithologies, 
similar in structure to cometary IDPs [7], A094-PB 
may have contained H2S ice (which is observed in 
comets [12]). 

O-isotopic compositions of secondary minerals in 
altered chondrites (e.g., CM chondrites) suggests that 
aqueous alteration occurs essentially in a closed sys-
tem, with 16O-poor fluid interacting with 16O-rich an-
hydrous silicates [13]. If aqueous alteration took place 
in Acfer 094, then the O-isotopic compositions of its 
hydrated matrix may have recorded a reaction path 
between (i) heavy water and (ii) the 16O-rich matrix 
silicates. This reaction is expected to lie along a mix-
ing line between these two reservoirs (presumably the 
slope-1 line), but small shifts toward 17,18O−rich values 
can result from equilibrium partitioning between ma-
trix silicates and water at varying temperatures [14]. 
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However, it appears that temperature variations having 
a minor effect on determining the isotopic composition 
of hydrated chondrites [13]. 

 
Figure 2. Three oxygen isotope diagram showing the 

composition of the COS and the matrix determined in this 
study. They both fall along the slope-1 line suggesting a ge-
netic relationship between matrix and heavy water (COS). 
The gray line is the bulk CO, CM and CM-matrix trend re-
ported in [13]. Bulk CO-CM anhydrous value is taken from 
[15]. The grey dashed line represents the extrapolated linear 
correlation of the matrix. Errors are 2σ. 

Our Fe-Mg-Al scanning ion map (Fig. 3) reveals 
that the Acfer 094’s matrix is a mostly mixture of Fe-
rich and Mg-rich silicates (Fig. 3). Since Fe content in 
the matrix is an indicator of aqueous alteration in the 
least altered carbonaceous chondrites [16], we grouped 
each pixel by its Fe content and calculated the O iso-
topic composition of Fe-poor, intermediate, and Fe-
rich matrix (Fig. 2). Our SIMS analyses show that the 
Acfer 094’s matrices do not plot along the bulk 
CO−CM−matrix line (i.e., δ17O = 0.69 × δ18O – 4 [13]) 
established by isotopic partitioning between CO or CM 
water and anhydrous silicates, convolved with mixing 
of two distinct isotopic reservoirs. Instead, they fall 
along a slope-1 line, which extrapolates to near the 
COS composition (Fig. 2). This result suggests that 
increasing aqueous alteration of the matrix correlates 
with increasing contribution of COS-like heavy O iso-
topes. Instrumental mass fractionation corrections were 
not applied, but would increase the δ17,18O values of 
Fe-rich matrix and decrease the δ17,18O values of Fe-
poor matrix in a mass-dependent way by a few per mil 
[17], decreasing the slope of the correlation. 

Together, our petrographic and isotopic results 
demonstrate that A094-PB accreted a significant pro-
portion of 16O-poor water ice (supported by the recent 
discovery of ultra-porous lithologies in Acfer 094 [7]) 
with O-isotopic composition probably close to that of 
COS. We propose that, due to an increase of tempera-
ture in A094-PB, accreted ice in this body melted, 
leading to S-bearing fluid circulation and precipitation 

of 16O-poor magnetite and sulfide at temperature likely 
below 100°C [4]. In order to preserve the extreme iso-
topic composition of the COS, the interaction between 
the heavy fluid and the anhydrous matrix should be 
minimal. Then, the remaining fluid reacted with 16O-
rich fine-grained silicates, increasing the δ17,18O values 
of these grains. 

The work presented here implies that A094-PB ac-
creted isotopically heavy water ice in the outer Solar 
System (Scenario 2). But the presence of pentlandite 
within COS suggests that A094-PB may also have ac-
creted a significant proportion of S-bearing ice (H2S or 
SO2) from the outer Solar System. Thus, like for oxy-
gen isotopes, sulfides in COS may carry the particular 
isotopic signature of an outer Solar System sulfur res-
ervoir which may have undergone photochemical pro-
cessing [18]. 

 
Figure 3.  (A) BSE image of an area of Acfer 094 show-

ing a matrix region (dashed line) which contains both Fe-
rich and Fe-poor grains. The dashed area delimited the ap-
proximate location where matrix has been measured by 
SIMS. (B) Fe-Mg-Al elemental map acquired by SIMS of the 
analyzed matrix area.  
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