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Introduction:  Evaporitic minerals on Mars have 

been identified by orbital instruments such as CRISM 

[1] and OMEGA [2], from Mars meteorites such as 

ALH84001 [3] and nakhlites [4], and by the in-situ 

rover missions such as Opportunity [5] and Curiosity 

[6]. The identification and characterization of evapora-

tive environments are important to reconstruct the cli-

matic history and to characterize the ancient aqueous 

fluids once present at the Martian surface and subsur-

face [5]. The CRISM summary products (simple band 

ratios and index maps) are commonly used to identify a 

diverse range of aqueous minerals, including sulfates, 

carbonates, phyllosilicates, and hydrated silica [7]. 

However, these methods can be time consuming and re-

quire attention to detail. Therefore, in this study, we 

demonstrate the capability of statistical learning algo-

rithms (also called Machine Learning (ML) algorithms) 

to better identify the different evaporitic spectra from 

common surface mineralogies on Mars using a mini-

mum number of bands/band combinations. 

 

Methods: We use 150 reflectance spectra combin-

ing the ten most likely evaporite mineral species with 

five abundant surface minerals on Mars to help select 

the most suitable bands and/or band combinations and 

ML algorithm. The evaporite mineral group includes 

anhydrite, aragonite, calcite, dolomite, epsomite, gyp-

sum, halite, magnesite, thenardite, and trona. The non-

evaporite mineral group (common surface minerals on 

Mars) includes clinopyroxene, hematite, olivine, ortho-

pyroxene, and plagioclase. Each mineral type was rep-

resented by ten spectra covering different particle sizes. 

Spectra were taken from RELAB, USGS, JPL and PSF 

spectral databases. Non-evaporite mineral group spectra 

were assigned as one common type called “surface” (50 

spectra), while evaporite minerals were treated sepa-

rately (100 spectra, with 10 spectra for each type). The 

band depths of all spectra were calculated using the 

“Convex hull” continuum removal methods and then the 

maximum band depth and their variations were calcu-

lated (Figure. 1). Based on the band depths and their 

variations, the wavelength range between 1000 nm - 

2500 nm was selected for further analysis. 

 

All spectra were resampled using Gaussian spectral 

response functions defined by the fwhm (full-width-half 

maximum) values of the CRISM Multispectral Survey 

(MSP) mode IR (infrared) data [2]. We created a Spec-

tral Resampling Bandpass Filter, removing some close 

bands in MSP mode (Figure 1). Eighteen band indices 

were initially calculated. These include the existing 

CRISM spectral summary product parameters [7] and 

new band indices based on the general shape of the spec-

tra and characteristics of the absorption features.  

 

Table 1: Calculated spectral parameters (band indices). 

Index Formulation 

BI01 (R1079 – R2390)/(2390.58 – 1079.96) 

BI02 R1875 – R1928 

BI03 R1690 – R1750 

BI04 R1079 – R2250 

BI05 R1079 – R2231 

BI06 R1079 – R2291 

BI07 R1079 – R2317 

BI08 R1079 – R2331 

BI09 R1079 – R2350 

BI10 R1079 – R2390 

 

The Learning Vector Quantization (LVQ) model is 

used to estimate the feature importance and the best fea-

ture combination to identify different evaporite minerals 

from common “surface” materials [8]. This algorithm 

learns to find features automatically by viewing all the 

spectra and deciding which parts of the spectra and 

which indices are most useful for differentiating be-

tween those minerals. We used stratified random sam-

pling with proportional allocations to split the entire da-

taset into two sets as training (to train the models) and 

validation (to evaluate their performance). Training sets 

include 80% of the observations (120 observations) and 

the rest are assigned as validation (30 observations) and 

kept aside to measure the accuracy of the winning ML 

algorithm. We adopted three ML algorithms, including 

Artificial Neural Network (nnet), Support Vector Ma-

chine (svm), and Random Forest (rf). The k-fold cross 

validation method was used to estimate the test error as-

sociated with each ML algorithm to evaluate their per-

formance on the training dataset [9]. For that, the train-

ing dataset was split into ten parts, nine to train and one 

to test, and program runs were conducted for all combi-

nations of train-test splits. The same process was re-

peated three times for each algorithm with different fea-

ture combinations to achieve the most reliable results 

with minimum band combinations. Finally, model per-

formance was measured using the validation data set 

with two statistical measures, Overall accuracy and 

Kappa [10]. The entire study was done using the R sta-

tistical software package. 
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Results: We achieved the highest accuracy with a 

minimum of ten features (indices) calculated over 12 

bands (Table 1). Artificial Neural Network algorithm 

was the best ML algorithm for identifying the evaporites 

using the ten selected spectral parameters (Figure 2). 

Accuracy tells us the percentage of observations that the 

model classified correctly, while the kappa statistics tell 

us how well two evaluators can classify an observation 

correctly. It was able to differentiate the “surface” spec-

tra from the evaporite spectra with 100% accuracy (Ta-

ble 2). Based on the results, within the evaporite miner-

als, there is a 50% chance to misclassify calcite as dolo-

mite, gypsum as anhydrite, halite as thenardite, and the-

nardite as “surface” materials, etc. Most of the above 

misclassifications are acceptable based on their spectral 

characteristics. The spectral response of both halite and 

thenardite are the same and only represent the O-H and 

H-O-H absorption features at 1.4 μm and 1.9 μm [11]. 

Calcite and dolomite also show similar spectral charac-

teristics and the increase of Fe2+ content in dolomite 

causes the carbonate band in their spectra to shift to 

longer wavelengths [12]. Therefore, the band position 

differences in calcite and dolomite could be too small to 

detect using current band passes. Even though anhydrite 

should be anhydrous and thus featureless near 1.4 and 

1.9 μm, most of our anhydrite spectra shows weak fea-

tures indicating that they are partially hydrated and pos-

sibly in transition to gypsum or bassanite [13]. 

 

 

 

 

 

 

 

 

 

 

Table 2. Confusion matrix of the test results. 

(A: anhydrite, B: aragonite, C: calcite, D: dolomite, E: epso-

mite, F: gypsum, G: halite, H: magnesite, I: thenardite, J: 

Trona, K: surface) 

 

      Future Work: Since we used the laboratory spectra 

to train the model, the trained model cannot be used to 

identify the evaporites directly from the CRISM MSP 

data because the image spectra are different from the la-

boratory spectra mainly due to the additive black noise, 

multiplicative noise, dust cover on the surface and at-

mospheric effects [14]. Therefore, we are continuing 

our study to find out/ model the image spectra for the 

above mineral types to identify the evaporites on Mars 

using the proposed method. We will also incorporate the 

effect of the dust cover to the spectral behaviors. 
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 A B C D E F G H I J K 

A 1 0 0 0 0 1 0 0 0 0 0 

B 0 2 0 0 0 0 0 0 0 0 0 

C 0 0 1 0 0 0 0 0 0 0 0 

D 0 0 1 2 0 0 0 0 0 0 0 

E 0 0 0 0 2 0 0 0 0 0 0 

F 0 0 0 0 0 1 0 0 0 0 0 

G 1 0 0 0 0 0 1 0 1 0 0 

H 0 0 0 0 0 0 0 2 0 0 0 

I 0 0 0 0 0 0 1 0 1 0 0 

J 0 0 0 0 0 0 0 0 0 2 0 

K 0 0 0 0 0 0 0 0 0 0 10 

Figure 1. Representative spectra of each mineral type, Maxi-

mum band depth (red dashed line) and the variations of the 

band depths (black dashed line). CRISM MSP IR band re-

sponses are shown in gray. 

Figure 2: Accuracy and interrater reliability of adopted 

Machine learning methods. The Neural Network method 

yielded an accuracy around 80%. 
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