A NEW METHOD FOR CONSTRAINING EXPLOSIVE ENVIRONMENTS IN TYPE II SUPERNOVAE USING PRE-SOLAR SILICON CARBIDE X GRAIN ISOTOPIC DATA. N. Liu1, B. S. Meyer2, L. R. Nittler3 and C. M. O’D. Alexander3, 1Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA, nliu@physics.wustl.edu, 2Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA. 3Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA.

Introduction: X grains constitute 1–2% of all presolar SiC found in primitive extraterrestrial materials \cite{1}. The high initial abundances of a number of short-lived nuclides (e.g., 26Al, 44Ti and 49V) in X grains, point to an origin in Type II supernovae (SNII). Moreover, multi-element isotopic data strongly suggest that X grains sourced materials across different SNII zones \cite{2}. On the other hand, type C grains and a few ungrouped grains (<0.1% in population) are probably also sourced from SNII \cite{3,4}. Given that mixing among different SNII zones during the explosion is extremely complex and poorly understood, it is quite a challenge to provide quantitative constraints on SNII model calculations, because one has too many degrees of freedom (e.g., relative mixing ratios) when attempting to reproduce the isotopic composition of an X grain using SNII nucleosynthesis model predictions. To make the problem worse, there exist large uncertainties in SNII model predictions. Recent SNII models from \cite{5} predict the occurrence of explosive H burning during the explosion. Bona fide SNII grains hold great potential to test this possibility. It is, however, quite challenging to solely investigate the effect of this process by data-model comparison while excluding uncertainties resulting from the mixing process. Here we propose a new method of constraining explosive SNII environments by excluding contribution from the mixing process, based on which we will examine different SNII models.

Methods: Compared to the ad hoc mixing approach adopted in previous studies, we will instead use \(\delta^{29,30}\)Si values of SNII grains as a proxy for the degree of mixing between inner and outer SNII zones. Previous studies have shown the following facts. (1) The wide range of negative \(\delta^{29,30}\)Si values of X grains results from mixing of almost pure \(28\)Si-rich material from the inner Si/S zone with more \(29,30\)Si-rich material from the outer region (He/C zone, He/N zone, and H envelope). Thus, more negative \(\delta^{29,30}\)Si values correspond more material from the Si/S zone \cite{1,2}. (2) X grains show 44Ti and 49V excesses that are correlated with their \(\delta^{29,30}\)Si values, corresponding to positive correlations of 44Ti and 49V with 28Si. The correlations can be used to provide constraints on the production ratios of 44Ti/48Ti in the Si/S zone \cite{6} and 49Ti/50Ti in the He/C zone \cite{4}. (3) The positive \(\delta^{29,30}\)Si values of type C and ungrouped SNII SiC grains are consistent with them incorporating less material from the Si/S zone compared to X grains \cite{3,4}. As a result, the isotopic compositions of C and ungrouped SNII grains are more representative of nucleosynthesis signatures in the outer SNII region.

To compare with X grain data, we conducted new nucleosynthesis calculations based on the simplified SNII model presented in \cite{7}. For the present study, we computed the explosive nucleosynthesis for an initially 25 \(M_\odot\) presupernova model from \cite{8} with explosion energies of \((1–10)\times10^{51}\) ergs. In this abstract, by comparing the constrained \(26Si/30Si, 44Ti/48Ti, \) and \(49Ti/50Ti\) ratios with this new set of SNII model predictions, we will provide new insights into the production of Si isotopes and 26Al in SNII and discuss the implications for explosive SNII environments.

Fig. 1. Silicon 3-isotope plot comparing X grains \cite{9} with SNII models. The numbers are the explosion energies \((\times10^{51}\) ergs) of the corresponding models.

\(29Si/30Si, 26Al\) and 44Ti: Figure 1 illustrates that the predicted Si isotope ratios in the Si/S zone depend strongly on the explosion energy. The majority of X grains lie along a line with a slope of ~2/3; Fig. 1 implies that this could be explained if their parent SNII had quite high explosion energies \((>7\times10^{51}\) ergs) in the center. Figure 2 further illustrates that in such high energy explosions, the Si/S zone produces abundant 26Al with the predicted \(26Al/27Al\) ratios reaching above unity, which can therefore account for the high inferred initial \(26Al/27Al\) ratios \((>0.1\) in general) observed in X grains \cite{e.g. 2,4,6}. The high energetic explosive environment in the Si/S zone also explains the fact that X grains show the highest initial \(26Al/27Al\) ratios among different presolar SiC groups, while types C and ungrouped SNII grains that sampled more material from the outer region generally had much lower ratios \cite{9}. The inferred explosion energies \((>7\times10^{51}\) ergs), however, are much higher than those \((0.5–3\times10^{51}\) ergs)
inferred for a few SNII (10–25 M\(_{\odot}\)) based on astronomical observations [10].

\[\text{Isotope Ratio} \]

\[\text{Explosion Energy (x10^{51} \text{ ergs})} \]

\[\begin{array}{|c|c|c|}
\hline
\text{Models for 25 M\(_{\odot}\) SN} & \text{\(^{50}\text{Ti}/^{48}\text{Ti}\) in Si/S zone} & \text{\(^{50}\text{Ti}/^{48}\text{Ti}\) in He/C zone} \\
\hline
\text{\(^{28}\text{Si}/^{32}\text{Si}\) in Si/S zone} & \text{\(^{28}\text{Si}/^{32}\text{Si}\) in He/C zone} & \\
\text{\(^{44}\text{Ti}/^{46}\text{Ti}\) in Si/S zone} & \text{\(^{44}\text{Ti}/^{46}\text{Ti}\) in He/C zone} & \\
\hline
\end{array} \]

Fig. 2. Plot of 25 M\(_{\odot}\) SNII models vs. different explosion energies in the Si/S and He/C zones.

Since the effect of an increase in the explosion energy can be mimicked by lowering the progenitor mass, the discrepancy likely implies lower progenitor masses for the parent SNII of X grains. We plan to compute new SNII models with a wide range of explosion energies and masses for further investigation. Note that \(^{44}\text{Ti}\) production in the Si/S zone has a much weaker dependence on the explosion energy. The SNII models in Fig. 2 predict \(^{44}\text{Ti}/^{46}\text{Ti}\) of \(\sim 0.6 \) within the constrained explosion energies. This generally agrees with the \(^{44}\text{Ti}/^{46}\text{Ti}\) ratio in the Si/S zone inferred from presolar grains, but there is a large spread in the data [6].

\(^{48}\text{Ti}\) and \(^{50}\text{Ti}\): Figure 2 shows that \(^{48}\text{Ti}/^{50}\text{Ti}\) in the He/C zone decreases with increasing explosion energy, resulting from more efficient neutron-capture in more energetic environments. Previous work observed correlated \(^{48}\text{Ti}\) and \(^{28}\text{Si}\) excesses in X and ungrouped SNII grains, based on which the \(^{48}\text{Ti}/^{50}\text{Ti}\) production ratio was constrained to be unity [4]. Comparison with the model predictions shown in Fig. 2 for Ti isotopes confines the explosion energy to lie within \((1.75-2.00) \times 10^{51} \text{ ergs}\), consistent with the astronomical observations but lower than the constraint obtained for the Si/S zone earlier. The constraint of \((1.75-2.00) \times 10^{51} \text{ ergs}\) is strongly supported by the Mo isotopic pattern observed in X grains [11]. Comparison of Grain B2-05 that had the most extreme isotopic anomalies reported in [11] with the SNII models in Fig. 3 shows that the \(1.75 \times 10^{51} \text{ erg model provides the best match to the grain data, in perfect agreement with the Ti-isotope constraint.} \)

We did not find the formation of Si/C zone (\(^{28}\text{Si}-\text{excess}\)) in our high-energy models as reported in [12]. The difference is likely related to differences in the details of the pre-SN evolutionary simulations adopted in the two sets of models. It was pointed out in [4], however, that the Si/C zone in the model of [12] produces too low Ti that this zone cannot account for the correlated \(28\text{Si}\) and \(49\text{Ti}\) excesses observed in X grains.

Implications: The observed Si isotopic compositions of X grains can be explained by SNII nucleosynthesis in the Si/S zone under energetic conditions \((>7 \times 10^{51} \text{ ergs})\). Such high explosion energies are additionally supported by the extremely high \(26\text{Al}/^{27}\text{Al}\) ratios observed in X grains. On the other hand, given the strong dependences of the \(^{49}\text{Ti}/^{50}\text{Ti}\) ratio and the Mo isotopic pattern on the explosion energy, it is clear that X grains were derived from SNII with a narrow range of progenitor masses and explosion energies. Finally, the discrepant explosion energies constrained for the Si/S and He/C zones in this study could be explained if (1) the \(^{22}\text{Ne}(\alpha,\gamma)^{25}\text{Mg}\) reaction rate is lower than currently adopted so that a higher explosion energy is required to produce the same neutron-number density, and/or (2) true hydrodynamical post-shock energy density variations allow the effective explosion energy in the Si/S zone to be higher and that in the He/C zone to be lower than would be inferred from a single explosion energy in the simple models employed here. More work is planned to investigate the two effects in detail.