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Introduction:  Mineral detection on Mars through 

hyperspectral remote sensing is of prime importance 

for understanding the composition of its surface and 

subsurface. Typically regions of interest are identified 

by spectral parameters, and spectra from these regions 

are then intensively analyzed in the context of labora-

tory spectra of known minerals [1, 2]. While effective, 

this approach is time consuming and subject to error 

or omission. Furthermore, it is not suitable for large 

scale mineral mapping. Hydrated mineral outcrops are 

usually small and/or subpixel level at typical space-

craft instrument spatial resolutions. Target detection 

(TD) focuses on distinguishing small and rare target 

pixels from various background pixels with a priori 

knowledge of target spectra [3]. Thus, TD is suitable 

for mapping low occurrence but scientifically valuable 

minerals. In this work, a new method to detect the 

presence and location of target minerals at low abun-

dances has been developed and applied to a laboratory 

visible and near-infrared (VNIR) hyperspectral image 

(HSI) containing Mars global simulant (MGS) [4] and 

serpentine mixtures. 

Method:  In this work, a new mineral detection 

method that joins the Hapke model [5] and spatially 

adaptive sparse representation-based (STD) is pro-

posed. The reflectance of each pixel is first converted 

to single scattering albedo (SSA) using the Hapke 

model, after which the spatial adaptive STD (SASTD) 

is applied to the SSA data in three steps: 

1) Single scattering albedo (SSA) retrieval. Due to the 

mineral particles being in close contact with each oth-

er, complex interactions introduce nonlinearities in 

reflectance. SSA is linearly additive in visible and 

infrared wavelengths [5]. The purpose of this step is to 

convert the reflectance to SSA. Consequently, the lin-

ear TD method can be implemented on SSA data. 

2) Background and target dictionaries construction. 

The target dictionary is constructed using a priori 

knowledge of target spectra, while the background 

dictionary is generated locally through a dual window. 

However, target pixels may fall into the background 

due to improper window size settings or the sliding 

window process. We propose an iterative background 

purification strategy to remove the potential target 

pixels in the background dictionary. 

3) Spectral reconstruction and target detection. A 

spatially adaptive STD [6] is adopted in this work, 

which incorporates spatial information into TD. 

We compare the proposed method with several 

traditional and state-of-the-art TD algorithms: (1) 

constrained energy minimization (CEM) [7]; (2) 

matched filter (MF) [3]; (3) sparse representation-

based detector (STD) [8]; (4) SASTD [6]. The per-

formance is assessed with metrics: 1) a detection map 

2) receiver operating characteristic (ROC) curve and 3) 

area under curve (AUC) value. The ROC curve illus-

trates the relationship between the detection probabil-

ity dP  and the false alarm rate fP  at a series of 

thresholds. dP  and fP  are defined as [9] 
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where dN  is the number of detected target pixels at a 

certain threshold; TN  denotes the number of total 

target pixels in the image; missN  represents the num-

ber of background pixels mistaken as targets; allN  is 

the number of total pixels in the image. 

Data:  We employ the experimental design de-

scribed by [10]. Powders of serpentine and a Mars 

global simulant [5] (MGS-1) were mixed by six mass 

proportions. The serpentine abundance are 0%, 1%, 

2.5%, 5%, 10% and 100%, respectively. MGS-1 is an 

excellent physical and spectroscopic analog to the 

global basaltic soil [5]. The samples were measured at 

Brown University using a Headwall imaging spec-

trometer. The spectral sampling interval is 8.98 nm 

and the instantaneous field of view (IFOV) is 1.36 

mrad. The data were converted from the digital num-

ber (DN) to reflectance, more details about the data 

acquisition can be found in [10]. Figure 1 shows the 

reflective spectra and corresponding SSA of the mix-

tures. Each curve is an average of 5x5 pixels. 
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Figure 1. Reflectance and SSA curves of six sample 

trays in the Headwall dataset. (left) Reflectance of 

each sample tray. (right) SSAs of each sample trays. 

Results:  The two-dimensional detection maps of 

all detectors are presented in Figure 2. Each grid con-

tains 11x11 pixels. For a fair comparison, all the de-

tection results are normalized to 0~1. The colorbar 

indicates the confidence of a pixel to be a target. The 

red color represents the pixel is likely to be a target 

(serpentine), while the blue color shows the pixel is 

likely to be a background (MGS). We only show the 

detection map with the SSA data due to the limit of 

the page. The detection value contrast of different 

abundance mixtures in the sparse representation-based 

methods is higher than that of other detection methods. 

By introducing the spatial constraint, our mapping 

results are more homogeneous than the others. The 

detection maps on the reflectance data have the same 

trend but which only definitely identify the 100% and 

10% serpentine. 

 
Figure 2. Detection results using Headwall data. The 

red color represents the pixel is likely to be a target 

while the blue color is likely to be a background. 

A good detection ROC curve should lie near to the 

upper left. With these Headwall data, the ROC curves 

of sparse representation-based detectors are above 

those of traditional detectors CEM, and MF (Figure 3). 

For the SSA dataset, the ROC curve of the proposed 

method broadly encloses those of other detectors, es-

pecially when fP  ranges from 0.005 to 1. It is ob-

served that the ROC curve of each detector for the 

reflectance data is below that of its SSA’s version, 

which makes clear that SSA is more suitable for min-

eral detection. 

The AUC values for the different detectors are 

shown in Table 1. The best results are labeled in bold. 

In reflectance data, the AUC value obtained by 

SASTD is improved from 0.7469 to 0.7799 by purify-

ing the background dictionary. In SSA space, the pro-

posed method achieves the best AUC value of 0.8938. 

We also evaluated the detection performance of the 

proposed approach on each serpentine tray. As shown 

in Figure 4, the AUC values are above 0.86 except for 

1% serpentine. The AUC value for 5% serpentine is 

smaller than for 2.5% serpentine due to structured 

noise and powder inhomogeneities within 5% serpen-

tine region. 

 
Figure 3. ROC curves of all detectors on the Headwall 

dataset. (left) reflectance dataset. (right) SSA dataset. 

Table 1. AUC values for the different detectors with 

the two datasets 

Algorithm 
Dataset 

Reflectance SSA 

CEM 0.5090 0.5924 

MF 0.5584 0.5971 

STD 0.7455 0.8025 

SASTD 0.7469 0.8121 

proposed 0.7799 0.8938 

 
Figure 4. AUC values of the proposed algorithm on 

each serpentine tray. 

Conclusions:  1) The proposed method achieves 

the best detection performance. 2) As shown in Figure 

4, our method is able to detect low abundance serpen-

tine (above 2.5%) in the binary mixtures. The 1% ser-

pentine is beyond the detection ability since the signal 

is too weak. How to coordinate laboratory and orbital 

detections is the focus of our future research. 

References: [1] Mustard et al. (2008) Nature, 454, 

305-309. [2] Carter et al. (2013) JGR, 118, 831-858. 

[3] Manolakis. (2002) GRSM, 19, 29-43. [4] Cannon 

et al. (2019) Icarus, 317, 470-478. [5] Hapke. (1983) 

JGR, 86, 3039-3054. [6] Zhang et al. (2017) GRSL, 14, 

1923–1927. [7] Farrand et al. (1997) RSE, 59, 64-76. 

[8] Chen et al. (2011) JSTSP, 5, 629-640. [9] Zou et al. 

(2016) TGRS, 54, 330-342. [10] Das et al. (2020) 51th 

LPSC. 

2324.pdf51st Lunar and Planetary Science Conference (2020)


