Oxygen generation by glow discharge under simulated martian conditions Maocheng Qian1,2, Zhongchen Wu1,2, Fabao Yan3,4, Zhongcheng Ling1,2, Yinyin Zhou1,2, \textdegreeInstitute of Space Science, Shandong University, Shandong, China (z.c.wu@sdu.edu.cn); 2Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Shandong, 264209, China; 3School of Mechanical, Electrical\&Information Engineering, Shandong University; 4Laboratory for Electromagnetic Detection, Institute of Space Sciences, Shandong University, Shandong, China

Introduction: The thin CO\textsubscript{2} atmosphere and strong oxidizing environment of Mars make it harsh and inhospitable for human survival. In-situ resource utilization to produce the supplies of life-sustaining materials such as O\textsubscript{2}, H\textsubscript{2}O and energy is the key technology for Human migration. Under low pressure about 600pa, the Martian atmosphere is nearly ideal for glow discharge which can generate O\textsubscript{2} and CO by decomposing CO\textsubscript{2} gas. Comparing to other methods of O\textsubscript{2} generation, CO\textsubscript{2} glow discharge under Mars conditions has several benefits such as lower-energy, lower-weight, higher-performance and easy to manufacture. In this study, several key parameters of CO\textsubscript{2} glow discharge related to the final yield of O\textsubscript{2} and CO[1,2] were investigated.

Experiment: The purposes of our experiment were to detect the key CO\textsubscript{2} plasma reaction products (i.e., CO\textsubscript{2}, O\textsubscript{2}, O\textsubscript{3}) and calculate their reaction yields under Martian simulated conditions with various working parameters. The experiment was conducted in the Mars environmental simulation chamber (cylinder-shaped, diameter 15cm, height 40cm) which can hold an atmospheric components and pressure similar to that on the Mars surface. The experiment set-up was shown in Fig.1. Two self-made parallel rounded copper planes (diameter 20mm; thickness 10mm) were used as discharge electrodes with a gap of 2mm to 5mm. The CO\textsubscript{2} gas plasma can be generated between the two parallel electrodes when a certain high A.C. voltages were applied to the tow electrodes. In order to achieve those aims, three electrochemistry gas sensors were purchased to continuously in-situ detect the concentration of CO (Guangzhou Xinnuo Intelligent Equipment Co., Ltd., MIC-500S-CO), O\textsubscript{2} (Guangzhou Xinnuo Intelligent Equipment Co., Ltd., MIC-600-O2) and O\textsubscript{3} (Shenzhen Korno Import & Export Co., Ltd., WT-80-O3) by sampling end gas at fixed flow rate during CO\textsubscript{2} plasma reaction.

Result: As show in Fig.2, the concentration of O\textsubscript{2} and CO increased quickly at the beginning of CO\textsubscript{2} plasma generation, and then became stable because the dynamic balance of new generated O\textsubscript{2} and CO in the Mars chamber were achieved. Finally, the concentration of O\textsubscript{2} and CO reduced to zero after turning off the power supply of CO\textsubscript{2} plasma.

The value of stable concentration of O\textsubscript{2} and CO in Fig.2 means the stable yield of O\textsubscript{2} and CO which was used to calculate the final yield of reaction produces under various parameters. After parameter optimization (such as excitation power of CO\textsubscript{2} plasma, discharge voltage, discharge gap distant, gas pressure et al.), the biggest yield is 1.33g/hr for O\textsubscript{2} with plasma exciting power of 182.7W.

Conclusion: In this study, an experimental setup for O\textsubscript{2} generation were built using a Mars chamber and the main plasma reaction products of CO\textsubscript{2} gas, i.e. O\textsubscript{2} and CO were detected and optimized. Our results verify the feasibility of generating O\textsubscript{2} on the surface of Mars. And more results will be published soon.

Acknowledgement: This work was supported by Natural Science Foundation of China (41573056, 41904158).

References:
[1] Dilshan Premathilake et al, 2019, ESS, 6, 557-564