RHENIUM ISOTOPE BASED COSMOGENIC EFFECT CORRECTION AND HAFNIUM-TUNGSTEN
CHRONOLOGY OF SANDIA MOUNTAINS AND SIKHOTE ALIN. Q. -F. Mei¹, M. Humayun¹, S. Sharma¹,
¹National High Magnetic Field Laboratory & Department of Earth, Ocean and Atmospheric Science, Florida State
University, Tallahassee, FL 32310, USA (qfmei@magnet.fsu.edu).

Introduction: The short-lived $^{182}$Hf-$^{182}$W system has been widely applied for examining the timescales
and processes of planetary accretion and differentiation (e.g., [1-4]). The interest in the $^{182}$Hf-$^{182}$W system is
based on its unique ability to constrain the timescale of metal-silicate separation (e.g., core formation in asteroids) [5]. Iron meteorites represent the initial $^{182}$W of their parent asteroids at the time of metal-silicate differ-
tentiation, which has been constrained to occur very early after the first solids formed in the solar system (e.g., [6-8]).

Resolving the temporal differences between various iron meteorite bodies requires higher precision W
isotope analysis, which has been achieved (e.g., [9]). However, applications of this chronometer to iron meteorites are hampered by neutron capture reactions on W isotopes that alter the $^{182}$W/$^{184}$W ratios, blurring the chronology [10-12]. Currently, a number of neutron capture proxies have been developed to help with reducing the neutron capture effects in W isotopes [6, 7, 13-17]. Neutron capture on W isotopes results in excess of $^{183}$W from $^{182}$W, $^{184}$W from $^{183}$W, $^{185}$Re from $^{184}$W and $^{187}$Re from $^{186}$W. The neutron capture cross-
sections of $^{182}$W and $^{186}$W are larger than that of $^{184}$W. Since $^{186}$W/$^{184}$W is a widely used normalizing ratio for mass bias in the mass spectrometer, the effect of galac-
tic cosmic rays (GCR) neutron capture is to distort the $^{182}$W/$^{184}$W ratios, exacerbating the effects of $^{182}$W burnout on chronology. Re isotopes, the production of $^{186}$W isotope burnout, are expected to provide a straightforward approach to correct the cosmogenic shift in W isotopic composition of iron meteorites.

The IIAB iron meteorites show the widest range of W/Re ratios (from 0.55 to 523; [18]) of any iron mete-
orite group. The IIABs have a substantial range of galactic cosmic rays (GCR) exposure ages, thus providing an ideal system to develop and test the practicability of using Re isotopes for cosmogenic neutron capture correction. Prior work [19] indicated variable $\delta^{187}$Re in IIAB irons.

Here, we report combined W-Re isotopic data for group IIAB iron meteorites. A correction method based on Re isotopes is presented to quantify the GCR effects on W isotopes in iron meteorites. Pre-
irradiation W isotopic compositions for iron meteorites using this method are presented.

Analytical Methods: Tungsten and Rhenium puri-
fications of four IIAB iron meteorites (i.e., Carver, Richland, Sandia Mountains, and Sikhote Alin) were achieved after a two-step ion-exchange chromatography.

High precision W and Re isotopic measurements were performed on a Thermo Neptune MC-ICPMS following previous studies [9, 19]. Mass fractionation during the W isotopic measurements was corrected by internal normalization, while the mass fractionation during the Re isotopic measurements was corrected by using W-doping method with NIST SRM 3163 [19]. All of the W and Re isotopic ratios were normalized to $^{186}$W/$^{184}$W = 0.92767 using the exponential law. The $^{185}$Re/$^{184}$W ratios in the spiked solution were maintained at the range of 0.60 to 0.75 in order to minimize the effects of WH$^+$ and ReH$^+$ [19]. The isobaric Os interference on Re was removed by sparging with Ar in warm nitric acid. The $^{186}$Os peak was measured to monitor and correct the $^{185}$Os interference, which shows that $^{187}$Os/$^{185}$Re ratio in samples generally lower than 0.05‰. Iron meteorite Dumont (IVB) with $^{187}$Os/$^{185}$Re of 0.15‰ shows exactly the same results as Dumont with $^{187}$Os/$^{185}$Re of 0.02‰, which suggests that the Os interference on Re can be corrected properly.

The W isotopic composition is reported as $\varepsilon^{186}$W:

$$
\varepsilon^{186}W = \left(\frac{[^{186}W/^{184}W_{\text{sample}}]}{[^{186}W/^{184}W_{\text{NIST SRM3163}}]}-1\right) \times 10000
$$

where i refers to 2 or 3. The Re isotopic composition is reported as $\delta^{187}$Re: $\delta^{187}$Re = $\left(\frac{[^{187}Re/^{185}Re_{\text{sample}}]}{[^{187}Re/^{185}Re_{\text{NIST}}]}-1\right) \times 10000$.

Results: The W and Re isotopic compositions of the analyzed samples are shown in Fig. 1.
Lunar preprocessed in the future tomonton (Canada) diated member with Solar System formation. 

ε and restore the original ε using the exponential law. Sikhote Alin were [319x404]to no nal S Sikhote Alin were [319x404]2075 Ma vs. 430 Ma 

genic effect is mainly burn-out of W. While Sandia Mountains has a higher Re/W ratio than Sikhote-Alin, it has a longer GCR exposure age (720 Ma vs. 430 Ma [20]). The δ187Re values of Sandia Mountains and Sikhote Alin were, therefore, used to restore the original 186W/184W. The restored 186W/184W ratios were then used to normalize the other measured W isotope ratios using the exponential law to obtain the excess ε183W and restore the original ε182W (Fig. 3). The restored ε182W value for IIAB parent bodies is ~ -3.42, corresponding to a core formation age of ~ 0.6 Ma after the Solar System formation. This number is consistent with Kruijer et al. [8, 22] who analyzed the least irradiated members of the IIABs (i.e., Negrillos and Edmonton (Canada)). More IIAB iron meteorites will be processed in the future to improve the precision of the pre-irradiation ε182W using Re isotopes correction.

Fig. 1. Plot of ε182W vs. δ187Re for IIAB iron meteorites. Error bars represent 2SE. The W and Re isotopic data of Negrillos are from Kruijer et al. [8] and Liu et al. [19], respectively.

Carver, Richland, Sandia Mountains, and Sikhote Alin have ε182W values of -3.48±0.04, -3.58±0.04, -3.19±0.03, and -3.62±0.04, respectively. Carver, Richland, Sandia Mountains, and Sikhote Alin have δ187Re values of +0.05±0.01‰, +0.22±0.01‰, +0.68±0.03‰, and +0.72±0.07‰, respectively.

The δ187Re values increase with the increasing W/Re ratios of the measured iron meteorites (Fig. 2).

Fig. 2. Plot of W/Re ratios vs. δ187Re for IIAB iron meteorites. Error bars represent 2SE. Data of Negrillos and Coahuila are from Liu et al. [19].

Discussion: Neutron capture on 184W and 186W produce 185Re and 187Re, respectively. The neutron capture cross-section of 184W is small, and the cosmogenic effect is mainly burn-out of 186W. While Sandia Mountains has a higher Re/W ratio than Sikhote-Alin, it has a longer GCR exposure age (720 Ma vs. 430 Ma [20]). The δ187Re values of Sandia Mountains and Sikhote Alin were, therefore, used to restore the original 186W/184W. The restored 186W/184W ratios were then used to normalize the other measured W isotope ratios using the exponential law to obtain the excess ε183W and restore the original ε182W (Fig. 3). The restored ε182W value for IIAB parent bodies is ~ -3.42, corresponding to a core formation age of ~ 0.6 Ma after the Solar System formation. This number is consistent with Kruijer et al. [8, 22] who analyzed the least irradiated members of the IIABs (i.e., Negrillos and Edmonton (Canada)). More IIAB iron meteorites will be processed in the future to improve the precision of the pre-irradiation ε182W using Re isotopes correction.

Fig. 3. Re-normalized ε182W and ε183W of Sikhote Alin and Sandia Mountains. Error bars represent 2SE. Data points of blue circles are from model presented by Leya and Masarik [21].