ONSET OF MAGMA OCEAN SOLIDIFICATION ON MARS INFERRED FROM Mn-Cr CHRONOMETRY. T.S. Kruijer, L.E. Borg, J. Wimpenny, and C.K. Sio. Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, 7000 East Avenue (L-231), Livermore, CA, 94550, USA (kruijerl@llnl.gov).

Introduction: The mantle of Mars probably differentiated through the crystallization of a magma ocean during the first tens of million years (Ma) of Solar System evolution [e.g. 1]. However, the exact timescale of large-scale silicate differentiation of the martian mantle as inferred from application of long-lived and short-lived isotope chronometers is debated [e.g. 2-5], and in particular, it remains unclear when differentiation commenced [4,5]. For instance, large-scale mantle differentiation may have started well within ~20 Ma after Solar System formation [5], but could also have been a more protracted process occurring between ~20 and 40 Ma [4], and possibly as late as 60 Ma after Solar System formation [3]. Tighter bounds on the timescales of martian differentiation can be obtained using the short-lived 53Mn-53Cr system (half-life: 3.7 Ma). This is because the relatively short half-life of 53Mn limits the effective production of radiogenic 53Cr. Variations to the first ~15-20 Ma of Solar System history. Thus, finding 53Cr variations among martian meteorites would provide unequivocal evidence for silicate differentiation on Mars within ~15-20 Ma of Solar System formation. However, 53Cr/52Cr data have so far only been obtained for five martian meteorites [6-8], precluding a detailed assessment of the extent of potential 53Cr variability among martian meteorites.

To more fully assess the differentiation history of Mars, we applied the Mn-Cr system to a comprehensive suite of martian meteorites, including different groups of shergottites, orthopyroxenite ALH 84001, polymict breccia NWA 7034, two nakhlites, and augite basalt NWA 8159.

Methods: For the determination of Cr isotopic compositions, we used precision carbon matrix aliquots of martian samples previously analyzed for Nd and W isotope systems [4]. After chemical separation of Cr through several ion chromatography steps, Cr isotopic compositions were determined on the Triton TIMS at LLNL largely following previously published methods [e.g. 7-8]. Measured 53Cr/52Cr and 54Cr/52Cr were corrected for instrumental mass fractionation by internal normalization to 50Cr/52Cr = 0.00518, and are expressed as μ-unit (i.e. parts-per-million) deviations relative to terrestrial reference materials (NBS 979, BHVO-2).

Results: All martian meteorites analyzed here exhibit resolved but identical 53Cr excesses relative to the NBS-979 standard, ranging from +16 to +24 ppm (Fig. 1). Such 53Cr excesses are consistent with the limited available data for martian meteorites reported in prior studies [e.g. 6-8]. However, the martian meteorites analyzed here have a much wider compositional range indicative of derivation from vastly different source regions. Thus, a key observation from the new results is that there are no resolvable 53Cr variations among the martian meteorites. The investigated martian meteorites encompass the full extent of compositional and isotopic variability known on Mars, including the full spread in 142Nd and 182W compositions observed so far [e.g. 3,4]. Hence, the uniform 53Cr excess of $+20.3\pm1.4$ (95% conf, N=16) observed for martian meteorite compositions is interpreted to reflect the 53Cr composition of the bulk martian mantle. The 53Cr composition of Mars is indistinguishable from enstatite and ordinary chondrites, but significantly more elevated than the bulk silicate Earth. Consistent with prior work [7-9], we interpret this 53Cr difference between Mars and the bulk silicate Earth to reflect a volatility-induced Mn/Cr fractionation at the start of Solar System history around ~4567 Ma.

Mn-Cr chronology of martian meteorites: Our results do not provide evidence for radiogenic 53Cr variations among the mantle sources of martian meteorites (Fig. 1). This may either reflect: (i) a lack of Mn/Cr variability amongst martian mantle sources resulting in un-resolvable 53Cr variations among martian meteorites, or alternatively, (ii) that silicate differentiation occurred after the effective lifetime of 53Mn. Although the first possibility cannot be fully ruled out, it is more likely that the sources of martian meteorites had significant Mn/Cr

Fig. 1: 53Cr compositions of martian meteorites from this study. Error bars denote external uncertainties (2σ).
The Mn-Cr age for silicate differentiation on Mars was calculated from the measured Mn/Cr in terrestrial and martian mantle derived rocks [2,3], combined Hf-W and Sm-Nd systematics [4], as well as combined Lu-Hf and U-Pb chronometry of zircons [5].

Fig. 2: Timescales of mantle differentiation on Mars inferred from Mn-Cr systematics. Model curves illustrate expected μ^{53}Cr variability as a function of differentiation time for different values of f, where $f = \frac{[\mu^{53}\text{Mn}/\mu^{53}\text{Cr}]_{\text{mantle source 1}} - 1}{[\mu^{53}\text{Mn}/\mu^{53}\text{Cr}]_{\text{mantle source 2}}}$. Shaded areas depict the maximum possible μ^{53}Cr variability on Mars [expressed as $\Delta(\mu^{53}\text{Cr})$] based on analyses of martian meteorites (Fig. 1).

To quantify the timescales of mantle differentiation on Mars, we calculated the expected range in μ^{53}Cr among martian mantle sources (Fig. 2). Comparing these model curves to the maximum possible observed range in μ^{53}Cr derived from the isotopic data (Fig. 1) yields minimum Mn-Cr model ages ranging from ~15 Ma ($f=2$) to a maximum of ~25 Ma ($f=5$) after Solar System formation (Fig. 2). Thus, we conclude that fractionation of Mn from Cr in the sources of martian meteorites was unlikely prior to 20±5 Ma after Solar System formation, otherwise differences in the measured μ^{53}Cr would be observed. As a result, the minimum Mn-Cr model age of 20±5 Ma derived above implies that any Mn/Cr fractionation associated with magma ocean differentiation on Mars cannot have occurred before that time. The Mn-Cr age for silicate differentiation on Mars corroborates existing Sm-Nd and Hf-W chronology of martian meteorites [2-4], as well as age estimates based on Lu-Hf analyses of martian zircons [5] (Fig. 3).

Fig. 3: Chronology for the earliest evolution of Mars. Core formation age based on Hf-W chronometry [1,12] and timescales of magma ocean differentiation on Sm-Nd chronometry [2,3], combined Hf-W and Sm-Nd systematics [4], as well as combined Lu-Hf and U-Pb chronometry of zircons [5].

This work performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This research was an outgrowth of Laboratory Directed Research and Development projects 17-ERD-001 and 20-ERD-001.