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Summary:  We investigate the scaling properties 

of the topography of the Earth, Mars, the Moon and 
Mercury at global scale down to the highest available 
scale. Planetary topographic fields are well known to 
exhibit (mono)fractal behavior. Still, a single fractal 
dimension is not enough to explain the huge variabil-
ity and intermittency of these fields. Previous studies 
have shown that fractal dimensions might be different 
from a region to another, excluding a general descrip-
tion at the planetary scale. In this project, we are ana-
lyzing the topographic datasets with a multifractal 
formalism to study the scaling intermittency. In the 
multifractal paradigm, the local variation of the frac-
tal dimension is interpreted as a statistical property of 
multifractal fields. The results suggest a multifractal 
behavior from planetary scale down to 10 km. From 
10 km to 100 m, the topography seems to be simple 
monofractal. This transition indicates a significant 
change in the processes governing the planetary sur-
faces. Using a comparative planetology approach, we 
will bring new elements to discuss the origin and for-
mation of the telluric bodies. 

 
Introduction:  The acquisition of altimetric data 

from Mars Orbiter Laser altimeter (MOLA) has moti-
vated numerous analysis of the Martian topography, 
in particular the surface roughness. A possible ap-
proach is to assume that topography can be mathemat-
ically described as a statistical field with quantitative 
parameters able to characterize the geological units. 
Many statistical indicators have been proposed and 
widely explored in order to study the surface of Mars: 
RMS height, RMS slope, median slope [1], autocorre-
lation length [2]. Useful information has been ob-
tained by the use of those indicators but they have the 
disadvantage of been defined at a given scale. By 
construction, they do not directly take into account 
the well-established scale symmetry that generally 
occurs in the case of natural surfaces. Indeed, statisti-
cal parameters like the mean or the standard deviation 
exhibit dependence toward scales. Hence the nature of 
this dependence needs to be accurately described, 
otherwise the description of the surface remain in-
complete. This subject has been widely studied in the 
past, parallel to the development of the notion of frac-
tals [3]. More interestingly, the fractal theory provides 
a mathematical formalism to describe the scale de-
pendence of statistical parameters toward scales. It 
turns out that simple power-law relations efficiently 
approach the variability of planetary surfaces. The 

associated power-law exponent provides a quantita-
tive parameter that is a good scale-independent candi-
date to characterize the geometric properties of a nat-
ural surface. A common example is given by the pow-
er spectrum of topographic field providing roughness 
information in the frequency space as done locally for 
the Moon [4]. 

On Mars, different authors have explored the scal-
ing properties of topography by the use of scale invar-
iant parameters. The observed local variation [5] ap-
parently rejects the idea of a global description of any 
topographic field at the planetary scale. However, 
modern developments in the fractal theory might be 
able to give full account to the observed variability 
and intermittency. As proposed by [6], it is possible to 
extent the fractal interpretation of topography to a 
multifractal statistical object requiring an infinite 
number of fractal dimensions (one for each statistical 
moment). 

 
Dataset:  We used the MOLA instrument database 

to study Mars [7], LOLA for the Moon [8], MLA for 
Mercury [9] and ETOPO1 for the Earth [10]. The 
highest resolution varies from 60 m from LOLA to 
1853 m for the Earth and the number of roughness 
measurement (fluctuations) varies from 2.105 for 
MLA to 1.1010 for LOLA. 

 
Method: To define a fluctuation (a local rough-

ness measurement), the simple altitude difference can 
be used. It corresponds to the “poor man” wavelet and 
can be advantageously replaced by the Haar wavelet 
that is more accurate and is useful over a wider range 
of exponents (-1 < H < 1 rather than 0 < H < 1 for 
differences) [11]. Then the mean Haar fluctuation 
over the entire planet, depending on scale is repre-
sented to exhibit scaling laws. In order to decipher 
monofractal versus multifractal, we also compute dif-
ferent moments (for instance : average of the square, 
for the moment order 2). This way, we can capture the 
full statistical distribution of roughness. 

 
Results: Figure 1 shows the main result of this 

analysis and demonstrates that scaling laws are ap-
propriate to describe the topographic fields of plane-
tary bodies. Although the linear correlation (scaling) 
is satisfying for all planetary bodies, two distinct scal-
ing regimes occur with a transition around 10 km. At 
scales larger than 10 km, all planetary bodies are dif-
ferent. Interestingly, the scaling law is characterized 
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for the Moon by H = 0.2, Mercury by H = 0.3, Mars 
and Earth by H = 0.5. At scale smaller than 10 km, 
the topography is still scaling but H = 0.8. 

 

 
Figure 1: Mean Haar fluctuations normalized in order to be 
approximatively equal at scale 10 km, as a function of 
scale. The normalization does not modify the scaling be-
havior but emphasize the transition that seems to occur 
around 10 km. 
 
 

 
 
 Figure 2: Structure function for different ranges of scales. 

 
In addition, Figure 2 presents the slope of the line-

ar fit for different moments. At low scale (< 10 km), 
figure 2 (left) indicates a simple linear relationship, 
demonstrating a monofractal behavior. The curvature 
on figure 2 (right) indicates that multifractal scaling 
seems to occur on a large but restricted range of scale 
(> 10 km). The curvature is described by the C1 pa-
rameters. Whereas the case of Mars, Mercury and 
Earth have similar of values of C1 around 0.1, the 
case of the Moon seems to be an exception with weak 
multifractal properties over the whole range of scales 
(C1 close to 0). 

 
Discussions: We demonstrate that a change of 

processes governing the planetary topography occurs 
at 10 km [12]. A multiplicative cascade process is 
occurring at scale higher than 10 km but a simpler 

monofractal scaling process is occurring a small scale. 
The same transition occurs for the Earth, Mercury and 
the Moon [13]. We propose the interpretation that the 
elastic thickness of the lithosphere is responsible for 
this transition by acting against the deformations 
caused by the different surface processes in two re-
gimes. The value of H may be related to its geological 
activity.  

The smaller the body, the less intense its internal 
activity due to intense thermal cooling. The value of 
H may be related to its geological activity. One can 
speculate that a more intensively convecting mantle 
yields a higher value of H. 

Craterisation is well known to be a fractal process 
with a single fractal dimension [4]. We propose that 
the low scales are dominated by craterisation process-
es, at the origin of the monofractal scaling law, as 
suggested [1]. Most probably, other effects, such ero-
sion and volcanism, should be dominant at larger 
scales. 

If the multifractal laws are fundamental of plane-
tary topography, we can generate synthetic topogra-
phies for the exoplanets with multifractal behavior  
[14]. An online tool allows us to explore such distant 
worlds in 3D [15]. 
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fluctuations in topography rapidly increasing with the scale (structured
aspect, high H). The relief profile tends to be persistent since the slopes
are highly correlated. At scales higher than Te, a change in relief trig-
gers an isostatic compensation which tends to oppose the large varia-
tions of the relief. The slopes of neighboring facets tend to be anti-
correlated and the topographic profile is rougher. The topography os-
cillates around a mean value since the slopes are more anti-correlated.
In this configuration, the altitude fluctuations increase only slightly
regarding to scale (low H). The common transition could be explained
by the averaged value of the elastic thickness quite similar for the 5
bodies (Grott and Breuer, 2008; Barnett et al., 2000; Nimmo and
Watters, 2004).

At scales larger than 10 km, all planetary bodies are different.
Interestingly, the scaling law is characterized for the Moon by =H 0.2,
Mercury by =H 0.3, Mars and Earth by =H 0.5. The smaller the body,
the less intense its internal activity due to intense thermal cooling. The
value of H may be related to its geological activity. One can speculate
that a more intensively convecting mantle yields a higher value of H.
This explanation links the large scale with dynamic topography
(Hager et al., 1985). The fact that only large the scale topography is
strongly multifractal is coherent with this explanation because multi-
fractal behavior is related to fluid mechanics. The geological origin of
this transition will be investigated in future works.

From our result, this pattern seems coherent other large ranges of

scale throughout the different bodies. Although suggesting that only a
few processes might operate simultaneously at different scales, this
result is not incompatible with the existence of processes operating at a
specific altitude or locations. For example the “glacial buzz” saw effect
seems limit the presence of high altitude on the Earth only
(Lorenz et al., 2011). Our results simply suggest that the contribution of
such process to global statistics can be neglected because if a strong
altitude dependent process occurs, it should have broken the scaling
behavior. It will be necessary to perform local analyses using the same
methodology to fully understand the effect of altitude dependent and
local processes on local statistic and how they correlate with multi-
fractal parameters.

As a future work, we plan to perform local analysis on area defined
by geological boundaries or altitude level to better understand the link
between the scaling behavior of topography and natural processes op-
erating at different location and altitude.
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Fig. 3. Mean Haar fluctuations normalized in order to be approximatively equal at scale 10 km, as a function of scale. The normalization does not modify the scaling
behavior from Fig. 2 but emphasize the transition that seems to occur around 10 km.

Table 2
Estimations of multifractal parameters. NA stands for non-applicable. If the value of C1 is very small (here < 0.02), we can consider that the field is not multifractal
and the value of α is not meaningful.

Scale < 10 km Earth Mars Moon Mercury

H 0.823 ± 0.004 0.773 ± 0.003 0.878 ± 0.002 0.922 ± 0.003
α NA NA NA NA
C1 0.01 ± 0.01 0.02 ± 0.006 0.02 ± 0.04 0.026 ± 0.005

Scale > 10 km Earth Mars Moon Mercury

H 0.479 ± 0.001 0.53 ± 0.001 0.226 ± 0.002 0.248 ± 0.002
α 1.70 ± 0.08 1.80 ± 0.06 1.4 ± 0.1 1.85 ± 0.1
C1 0.093 ± 0.002 0.110 ± 0.002 0.03 ± 0.01 0.059 ± 0.002
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Appendix A. Annex: Bayesian regression

In order to estimate the best set of parameters (H, C1, α) modeling the data, the parameters can be estimated in a classical way by performing
regressions on the function ζ near the mean =q( 1) to quantify its curvature related to α and C1 (Lovejoy and Shertzer, 2013) by the theoretical
formulas:

Fig. 4. Plot of different statistical moments for the four bodies. Although 21 moments have been computed for the purpose of this analysis (from 0.1 to 2 by steps of
0.1), only a few non-integers moments are plotted here for order 0.1 to order 2 by step of 0.2.

Fig. 5. Structure function for different ranges of scales.
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