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Introduction: The CanMoon lunar sample return 

analogue mission was a part of the Canadian Space 
Agency’s (CSA) Lunar Exploration Analogue Deploy-
ment (LEAD) initiative, which aims to develop technol-
ogies and processes, as well as to train students and 
young professionals for future space missions. This mis-
sion was carried out by both the University of Western 
Ontario (Western), and the University of Winnipeg. The 
analogue mission was a simulation of a real-time oper-
ations scenario where a lunar-based scientific rover is 
operated and controlled from an Earth-based mission 
control center. For a full overview of the 2019 
CanMoon analogue mission see Marion et al. [1]. Three 
teams were formulated for the mission: planning, sci-
ence, and field teams. While the science team is in 
charge  of deciding which scientific measurements to 
take and analyzing the returned data, the planning team 
commands the rover, keeping in mind the limitations 
imposed by the rover and the environment. Finally, the 
field team performs the activities of the rover in the ex-
ploration site.  

As part of the mission, we explored the use and im-
plementation of machine learning and deep learning 
models to aid in the decision making process of both the 
science and the planning teams. Leveraging the amount 
of imagery that the rover sends back to the ground, ma-
chine learning models could identify and localize the 
presence of different objects within the rover’s sur-
roundings. In addition, by performing the inferences 
within a short amount of time, these methods could pro-
vide quick insights and help guide the operators in mak-
ing their decisions. It should be noted however, that the 
aim is not to replace the scientists and operators in mak-
ing decisions, as this was a real-time mission with a hu-
man in the loop at all times. 

Of the 4 science goals laid out by the science team 
[2], one was finding xenoliths to determine if a rover 
would be able to identify and sample pieces of lunar 
mantle material. Keeping in line with this goal, it 
quickly became apparent that this same task could po-
tentially be accomplished by the models. Thus, the mod-
els were designed to perform pixel-wise classification 
on imagery from the rover. Even though the team had 
produced geological maps of the landing site based on 
satellite imagery [2], there were no images on the 
ground that would have allowed for pretraining a clas-
sifier prior to the mission. This also follows the scenario 
of a real mission where there will be no prior imagery 
of the ground from the rover’s perspective.  

It came as a surprise to the team when the first pan-
orama image from the rover contained something that 
did not appear on the remote sensing data: lichen. Since 
lichen was protected at this field site, a limitation was 
imposed on the rover that it could not traverse across 
lichen. Here then was another opportunity for the use of 
autonomous image classification, i.e., finding where the 
lichen was within an image. 

Methodology: Two algorithms were implemented 
for this task: random forests [3], and artificial neural 
networks [4]. To build the training data, all the images 
from the first few days where curated by the team. Zoom 
images and panorama images containing known xeno-
liths and lichen were used to label xenolith pixels and 
non-xenolith pixels. A sample panorama image is 
shown in Figure 1 and a sample zoom image is shown 
in Figure 2. Notice that xenoliths and lichen are visually 
very similar to one another. And where humans cannot 
differentiate between one and the other, machine learn-
ing models might be able to do better.  
 

 
Figure 1. One of the images returned from a panorama 

prior to stitching. 
 

 
Figure 2. Targeted zoom image of what appears to be 

a xenolith. 
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TextureCam. An existing implementation of pixel 
wise classification with random forests was used [3, 5]. 
The process involved three main steps: 

1. Training image preparation - image filtering 
and remapping to HSV 
2. Training a Random Forest classifier – an en-
semble of decision trees  
3. Inference on new image scenes. 
The TextureCam software has been used before in 

the CanMars 2016 Mars Sample Return Analogue mis-
sion and has proved to be an effective classifier when 
distinguishing between different colored units within a 
scene [6]. One important distinction between the 
CanMars and the CanMoon mission is that CanMars 
was not a real-time mission. There was a significant 
time delay between uplink to the rover and the downlink 
of returned data. 

Artificial Neural Networks. An Artificial Neural 
Network (ANN) is a classifier that takes in an input vec-
tor, performs a linear combination of the input, and 
passes it to a non-linear activation function [4]. This 
process is repeated for however many nodes one layer 
has. For each layer in the network, the outputs of the 
activation functions are linearly combined again to be 
fed to another non-linear activation function. The choice 
of how many nodes and how many layers are hyperpa-
rameters that is chosen beforehand. The network then 
outputs a probability for which class the output belongs 
to. Similar to the TextureCam implementation, raw 
pixel values in the HSV color space has been chosen as 
the input as this mapping has been known to perform 
well in classification tasks. The output layer then out-
puts probabilities for each pixel to belong to one of the 
following classes: xenolith, lichen, scoria, basalt. Labels 
for each class has been done manually from zoom im-
ages. The architecture composed of 2 layers, and 32 
nodes for each layer. The sigmoid function has been 
chosen as the activation for each node, and Adam was 
chosen as the optimizer.  

Results: The ANN performed quite well, achieving 
an 88% accuracy after being trained for 100 epochs. 
Figure 4 shows the predictions made on Figure 1. The 
resulting heat map shows that the classifier cannot pin-
point exactly where each object is going to be, but it can 
provide a rough map of where to expect lichen and xen-
oliths. Once used to highlight where the lichen could be, 
the algorithm proved to be helpful during traverses 
when lichen was illuminated by direct sunlight, making 
them difficult to see. Figure 4 shows a heat map ob-
tained by the ANN. 

Figure 5 shows the predictions made by TextureCam 
on Figure 2. Right away, it can be seen that the xenolith 
is highlighted in the heatmap, demonstrating the poten-
tial of the algorithm in finding objects of interest. 

 
Figure 4. Predictions made by the ANN on Figure 1. 

Lichen were highlighted as the green pixel. 
 

 
Figure 5. Predictions made by TextureCam on where 
the Xenolith is within the image. Xenoliths were high-

lighted as the red pixel. 
 

Conclusions. There really is  no computer more 
powerful than the human brain especially when it comes 
to finding objects within an image. Thus, in a real-time 
operations scenario, a machine learning model would 
not be able to outperform scientists in finding xenoliths 
accurately. However, in the same real-time scenario, co-
pious amounts of imagery is being returned by the rover. 
Machine learning models could then swiftly make infer-
ences on the images and help provide scientists with 
quick insights and draw their attention towards areas 
with objects of interest, maximizing the opportunity for 
science throughput. 
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