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Introduction

In recent years, the canonical picture of the most widely

accepted scenario of the Moon’s formation (the giant impact

theory) has become complicated due to recent highprecision

measurement of isotope ratios for oxygen and other elements

in lunar samples. The measurements suggest that the bulk iso

tope ratios for the Moon are essentially identical to those of

the Earth (e.g. Zhang et al. 2012). This is a problem for the

“classic” scenario in which the Moon is formed by the oblique

impact of a Marsmass body with the protoEarth and subse

quent accretion from a postimpact disk surrounding the Earth.

The classic picture suggests that the Moon is primarily made

of impactor material. Generating nearidentical isotope ratios

by this sequence of events would require a presumably un

likely nearidentical isotopic composition of the impactor and

protoEarth.

Thus, new models have been proposed that may overcome

this difficulty. In particular, Ćuk and Stewart (2012) proposed

a model in which the protoEarth is rapidly spinning and struck

by a relatively lowmass impactor, forming a hot, rapidly rotat

ing structure in which convection allows effective mixing and

homogenization of isotope ratios for the subsequently formed

Moon. This type of postimpact structure has been dubbed a

“synestia” by Lock et al. (2017, 2018).

The SelfConsistent Field method

The work described here is part of a larger effort to validate

formation models via high resolution simulations the Moon

forming impact with a stateoftheart hydrodynamics code.

While such a calculation is the best method available for de

scribing the impact and its immediate aftermath, it is limited

to modeling a time period of hours to several days after the

impact. Studying the longerterm evolution of the EarthMoon

system will require a different method that sacrifices some of

the dynamical details of the system in order to model quasi

steadystate longterm development. We have been working on

applying the socalled SelfConsistent Field (SCF) method in

order to generate postimpact configurations. The SCF method

has a long pedigree in astrophysics stretching back to the 1960s,

having been applied to modeling selfgravitating bodies with

significant angular momentum (Tassoul 1979). In particular it

is applicable to the “inbetween” situation where objects nei

ther rotate slowly enough to be considered quasispherical, or

so fast as to be approximated by thin disks (as in accretion disk

theory).

Use of the method requires the assumption of a configura

tion in which 1) the rotation rate Ω is a function of the cylindri

cal radius ϖ = r cosθ and the concomitant assumption that the

pressure P and density ρ can be related by P = P(ρ), i.e. that

the configuration is barotropic (even if the underlying equation

of state (EOS) is more general (i.e. P = P(ρ,T )). (For ex

ample, if the configuration is isentropic, or more generally, the

temperature T also happens to be a function of ρ in the object.)

If these assumptions hold, then the gravitational potential can

be algebraically related to the enthalpy H =
∫

dP/ρ = H(ρ)
and the configuration structure can be calculated by an iterative

procedure involving the solution of the Poisson equation for

the gravitational potential Φ, to which is added the centrifugal

potential Φ derived from the rotation curve Ω(ϖ). Hydrostatic

equilibrium yields H(r,θ ) = Ψ + Φ (up to a constant of in

tegration), which we invert for ρ(r,θ ) = ρ(H) for successive

iterations of the object’s density structure.

Expansion into Legendre polynomials and radial functions

We choose to follow the method outlined by Boss (1980) and

described in Bodenheimer et al. 2007. The configuration is

expressed in (axisymmetric) spherical polar coordinates (r,θ ).

The meridional variation of the density and potential is ex

panded in sums of Legendre polynomials, with radial functions

of r for each component, i.e. ρ and potential Ψ:

ρ(r,θ ) = ∑
l

ρl(r)Pl(cosθ ), Ψ(r,θ ) = ∑
l

Ψl(r)Pl(cosθ ).

The standard technique of separation of variables applied to the

Poisson equation in spherical coordinates leads to an ordinary

differential equation for the radial potential function Ψl(r) for

the component l:

d2Ψl

dr2
+

2

r

dΨl

dr
−

l(l +1)

r2
Ψl = 4πGρl . (1)

Discretization on a grid ri yields a tridiagonal matrix system

for the discretized version of Ψl . If the mass of the configu

ration is entirely inside the outer boundary rout then the radial

equation can be used to give the solution behavior as r tends

to infinity. Acceptable solutions behave as Ψl(r) ∝ r−(l+1),

giving a boundary condition at rout of

dΨl

dr
+

l +1

r
Ψl = 0. (2)

For the inner boundary condition Ψl(r = 0) = 0 for l > 0,

while for l = 0, we have boundary condition from the moment

equation for ρ , Ψ0(r = 0) =−4πG
∫ rout

0 ρ0(r)r dr.

Following the solution for Ψl we sum over l to find Ψ(r,θ ).
From Ψ and the centrifugal potential Φ we find the enthalpy H

which is then inverted to get a new estimate for the density ρ .

The constant of integration for the enthalpy is set by requiring

that the density integrated over the volume equal the desired

total mass. The new density estimate is expanded into Legendre

components ρl (r), and the process is repeated until convergence

is achieved.
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Figure 1: Self-consistent-field (SCF) models of rotating

polytropes (indices n = 1 and n = 3) vs. semi-analytic models

computed by R. A. James (1964). From top to bottom,

panels show the equatorial radius R, polar radius z and scaled

mass M/4π for computed models (open squares) versus the

James results. Left panels: results for polytropic index n = 1.

Right panels: results for polytropic index n = 3. Legendre

components up to l = 16 (even components l only) included

and radial grid of 200 points. For n = 1 the grid outer radius

was rout = 5 and for n = 3 rout = 10.

We have developed a program for SCF calculations and

have tested it successfully on configurations such as uniformly

rotating polytropes (cf. James 1964), for which the pressure is

related to the density by a power law P = Kρ1+1/n. Results are

shown in Fig. 1, which plots the equatorial and polar radii (R

and z) and the scaled mass M/4π as a function of a measure of

the rotation v = Ω2/8πGρ0(r = 0), where Ω is the rotation rate

and ρ0(r = 0) is the density at the origin. Results are shown

for polytropic indices n = 1 and n = 3. For these particular

calculations, the angular variation was expanded in Legendre

components up to l = 16 (even components l only, as equatorial

symmetry was assumed) and a radial grid of 200 points was

used. For n = 1 the grid outer radius was rout = 5 and for n = 3

rout = 10.

Future work will include improvements to take into ac

count issues such as scaling to physical dimensions, realistic

equations of state (cf. Korycansky 2019), and nonuniform ro

tation. Ultimately we hope to create easilycalculable models

that can be used to study issues such as the environment of the

Earth after the Moonforming impact.
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