Europa Lander Stereo Spectral Imaging Experiment (ELSSIE)

Scott L. Murchie¹ (scott.murchie@ jhuapi.edu), John D. Boldt¹, Bethany L. Ehlmann².³, Karl Hibbitts¹, Russell S. Layman¹, Joseph J. Linden¹, Jorge I. Núñez¹, Frank P. Seelos¹, Kimberly D. Seelos¹, and Calley L. Tinsman¹. ¹Johns Hopkins University Applied Physics Laboratory, 11101 Johns Hopkins Rd., MS 200-W230, Laurel MD 20723. ²California Institute of Technology, 1200 E. California Blvd., MC 150-21, Pasadena, CA 91125. ³Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109.

ELSSIE is a visible/short-wave infrared (VSWIR) stereo imager and point spectrometer that would provide for Europa Lander (EL):

- 1) panoramic and workspace views to support sampling and geological analyses;
- 2) VSWIR images and point spectra to identify and characterize enrichments in organics and non-ice phases and
- determine which ice is least radiation-damaged, thus supporting selection of the best samples for detailed in situ analysis;

Lessons from Mars...

VIS color is minimally

surveys of the landscape for morphological and spectral evidence of active surface processes.

How SWIR Informs EL Sample Selection

The signatures of an interesting sample are:

- · Hydrated salts indicating concentrated ocean water
- Organics indicating possible biosignatures
- · Fresh ice without grains (and organics) disordered by radiation

How to find hydrated salts

· 1.5-um band offset to shorter wavelengths

How to find & distinguish organics

• 3.3- to 3.4-µm band

Longer-wavelength band for aliphatic, shorter for aromatic

How to find fresh ice (using depths different wavelengths penetrate) Freshest – amorphous (no 1.65-µm band, no 3.1-µm peak) Fresh – has crystallized (has 1.65-µm band, has 3.1-µm peak)

X Radiation damaged crystalline ice – grain rims have become amorphous (has 1.65-µm band, no 3.1-µm peak)

[1] Murchie S. et al. (2007) JGR Planets, 112, E05S03.

58/europa-lander-study-2016-report/

[2] Blaney D.L. et al. (2017) Lunar Planet. Sci. 48. #2244.

[3] Smith P.H. et al. (1997) JGR Planets, 102, 4003-4025. [4] Hand, K. et al (2017) https://europa.nasa.gov/resources/

[5] Turtle, E.P. et al. (2016) Lunar Planet, Sci. 47, #1626.

• SWIR reveals phases invisible at 0.4-1.0 µm (VIS)

Technical Inspirations

MRO/CRISM imaging spectrometer [1]

- · Most information can be captured by a few colors
- · "Summary images" show mineral indices

Europa Clipper/MISE imaging spectrometer [2]

- Sorting and averaging of many short exposures mitigates radiation-induced noise
- Onboard image math in the DPU
- Imager for Mars Pathfinder stereo multispectral imager [3]
 - Images from multiple sensors on a single focal plane; on Europa Lander cameras, enables just 1 radiation

ELSSIE Concept

Science Traceability nts @ 1.25, 1.5 µm and continuum

REFERENCES:

Design & Testing in ICEE-2

ICEE-2 Development Tasks

- 1) Iterate sensor & DPU designs to shrink volume, mass resource utilization, then proceed to mechanical design 2) Demonstrate compatibility of suitable detector with heat
- microbial reduction 3) Model radiation at FPA to verify noise within tolerance of
- onboard processing; iterate shielding design as needed 4) Build prototype lens cell and demonstrate performance at cryogenic temperature (leverage EIS development [5])
- 5) Build prototype adjustable focus and demonstrate performance at cryogenic temperature
- 6) Build prototype spectrometer
- 7) Prototype & demonstrate onboard processing algorithms

Filters / # Exposures for Radiation Mitigation, SNR

Data Acquisition and Onboard Processing

processing = MISE radiation remediation + CRISM calibration and summary product pipeline

Onboard

Simulation of the full onboard pipeline includes:

- Noise sources from bottoms-up radiometric model
- Worst-case radiation noise from MISE algorithm development
- Finite residuals from registration of different camera filter

Step 1: Onboard Radiation Noise Mitigation Step 2: Onboard Image Rescaling

- · Statistical approach acquire N frames, rank pixel values, throw
- out X highest, coadd remaining frames

 Based on MISE radiation statistics 15% event probability for 0.05-s exposure
- Due to scale differences, must co-register filters
 Image math shown before / after onboard rescaling
- Scaling matrix function f (filter, focus, T) solved onboard using telemetry; coefficients calibrated onground