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Introduction:  CMs are the largest group of carbo-

naceous chondrites (CC), comprising 37% of observed 

CC falls [1]. CM-related material is also widespread as 

inclusions within a diversity of inner Solar System ma-

terials, including HEDs, the lunar regolith and ordinary 

chondrite breccias [2, 3]. Here we present the results of 

an extensive oxygen isotope study of a wide range of 

CMs and related meteorites. Our results suggest that 

CM-like material may originate from a diverse range of

asteroids or, alternately, the CM-parent body was more

isotopically heterogeneous than previously considered.

Materials and Methods: O-isotope data for CM1 

and CM1/2 chondrites [4], CM2s [5,6,7,8] and CO3s 

[9] were obtained at the Open University by laser-

assisted fluorination [10]. CMs pose particular prob-

lems for laser fluorination analysis due to reaction with

BrF5 at room temperature [8] and so most analyses

were obtained by the “single-shot” method, with just

one sample and one standard loaded per tray [8].

CMs:  The oxygen isotopic composition of CM1, 

CM1/2 and CM2 chondrites are plotted in Fig. 1. 

Fig.1 Oxygen isotope composition of CM chondrites. Sym-

bols CMs: A81:ALHA81002, CB: Cold Bokkeveld, EET 96 

(AK2): EET 96029 (AK2) [11], EET 96029 [11]:  E: Essebi, 

Ma: Maribo, Mi: Mighei, M: Murchison, Mu: Murray, 

N:Nogoya, P-A: Paris-altered, P-L: Paris-less altered, Q93: 

QUE 93005, Q97: QUE 97990, Y79: Y791198,  W: WIS 

91600. C2-ung E:Essebi. CM1/2 MCY: MCY 05231. Filled 

green circle is the intercept of the CM2 and CM1-CM1/2 

regression lines. 

CM2 analyses in Fig. 1 define a linear trend with a 

slope of 0.70 [8]. In contrast, CM1 and CM1/2 anal-

yses define a distinct trend with a slope of 0.48 [4]. 

MCY 05231 CM1/2, which has a relatively low phyllo-

silicate content [12], plots away from this trend. All the 

CM1 and CM1/2 chondrites in Fig.1, with the excep-

tion of Moapa Valley are Antarctic finds. The best fit 

line through the CM1 and CM1/2 data, excluding 

MCY 05231, intersects the terrestrial fractionation line 

(TFL) close to the value of Standard Light Antarctic 

Precipitation (SLAP) (Fig. 2). As is also the case for 

Antarctic CO3s [9], the bulk oxygen isotope composi-

tion of CM1s and CM1/2s appears to have been shifted 

by interaction with Antarctic precipitation. The CM1s 

and CM1/2 may be more susceptible to low tempera-

ture terrestrial alteration as a result of their higher con-

tent of fine-grained phyllosilicates and lower crystallin-

ity compared to CM2s [4]. CM1s often have foliated 

textures and a few (e.g. LAP031166 and Moapa Val-

ley) have been described as having large fractures that 

may also facilitate ingress of terrestrial fluids The pris-

tine isotopic composition of the CM1s and CM1/2 

cannot be determined with certainty, but may corre-

spond to the intersection of the two regression lines in 

Fig. 1 (green circle) [4].  

Fig. 2 Oxygen isotope composition of CM chondrites shown 

in relation to Antarctic precipitation (SLAP) and weathering 

products in isotopic equilibrium with it at 0°C [9].  

Primitive CMs: CMs and COs show a range of 

textural and geochemical similarities and a close genet-

ic relationship between the two groups is generally 

accepted [14].  However, while the chondrule popula-

tion within the two groups are essentially indistinguish-

able [15], differences in terms of mean chondrule size 

have been reported [16]. A further difference relates to 

the amount of water that would have been accreted to 
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the parent bodies of the two groups [15], with COs 

being essentially dry and CMs having experienced sig-

nificant aqueous alteration [17]. A further important 

difference is the compositional gap between the two 

groups on oxygen three isotope plots [8] (Fig. 3). 

 
Fig. 3 Oxygen isotope composition of COs and CM2s. The 

gap between the two groups is occupied by a number of un-

grouped C2 chondrites that may constitute a “primitive” 

CM group. CO data [9], LEW 85311 [18], other C2-

ungrouped data from literature, see text for references. 

Interestingly, the CO-CM oxygen isotope “gap” is ef-

fectively filled by a significant number of meteorites, 

generally classified as C2-ungrouped, which show tran-

sitional features between the two groups. LEW 85311, 

EET 87522 and Y-82054 are currently classified as 

CM2s, but were identified as ungrouped by [17] on the 

basis of their 16O-rich oxygen isotope compositions.  

LEW 85311 appears to be a CM-like meteorite with an 

anomalously low level of aqueous alteration [18, 19]. 

NWA 5958 is another ungrouped chondrite with CM-

like characteristics [20] and may be related to LEW 

85311. The ungrouped C2s Acfer 094 and GRO 95566 

were also identified by [19] as having CM affinities, 

although both are normally considered as unique spec-

imens. MAC 87300 and MAC 88107 are not consid-

ered to be paired, but both show affinities to the CO3 

chondrites, while displaying evidence of variable de-

grees of aqueous alteration [21]. Based on the Met. 

Bull. Descriptions, NWA 7821 and NWA 11556, 

which have closely similar oxygen compositions (Fig. 

3), appear to have some CM-like characteristics. Ade-

laide is a C2-ungrouped meteorite with affinities to the 

CO3s and in particular ALH 77307 [22]. Despite its 

extremely 16O-rich oxygen isotope composition (Fig. 3) 

El Medano 100, based on its Met. Bull. Description, 

appears to have a CM-like mineralogy. 

How many CM-related parent bodies? Hydrated 

CC meteorites are dominated by the well-populated 

CM group. While displaying some CM-like character-

istics, it has been suggested that NWA 5958 may be 

from a distinct parent body to the CM2s [20]. We 

would tentatively suggest that other 16O-rich, CM-like 

chondrites that plot in the CO-CM “gap” might be re-

lated to NWA 5958. Possible candidates for such a  

“primitive” CM group, include: EET 87522, GRO 

95566, LEW 85311, MAC 87300, MAC 88107,  NWA 

7821, NWA 11556 and  Y-82054. Alternatively, as a 

number of these samples plot close to the CM2 mixing 

line in Fig. 3 the CM parent body may be even more 

isotopically heterogeneous than has previously been 

considered. 

While El Medano 100 appears to show CM-like 

characteristics its oxygen isotope composition suggests 

that it is derived from a distinct source to the other C2-

ungrouped meteorites. CM1 and CM1/2 chondrites 

may be derived from the same parent body as the 

CM2s, but this remains an open question [4].  

Conclusions: The gap in oxygen isotope composi-

tions between COs and CMs is occupied by C2-

ungrouped meteorites which show affinities to both 

groups. One possibility is that the CM parent body is 

more isotopically heterogeneous than previously 

thought. Alternatively, CM-related material is present 

on multiple bodies and formed from similar starting 

materials and then experienced variable degrees of 

hydrothermal processing. As in the case of the relation-

ship between CM1, CM1/2 and CM2 chondrites, ter-

restrially recovered samples may be compromised and 

difficult to interpret.  The pristine samples returned 

from the asteroids Bennu and Ryugu by the OSIRIS-

REx and Hayabusa2 missions will provide a unique 

opportunity to study the diversity of materials present 

on primitive aqueously altered bodies.  
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