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Introduction: CMs are the largest group of carbo-
naceous chondrites (CC), comprising 37% of observed
CC falls [1]. CM-related material is also widespread as
inclusions within a diversity of inner Solar System ma-
terials, including HEDs, the lunar regolith and ordinary
chondrite breccias [2, 3]. Here we present the results of
an extensive oxygen isotope study of a wide range of
CMs and related meteorites. Our results suggest that
CM-like material may originate from a diverse range of
asteroids or, alternately, the CM-parent body was more
isotopically heterogeneous than previously considered.

Materials and Methods: O-isotope data for CM1
and CM1/2 chondrites [4], CM2s [5,6,7,8] and CO3s
[9] were obtained at the Open University by laser-
assisted fluorination [10]. CMs pose particular prob-
lems for laser fluorination analysis due to reaction with
BrFs at room temperature [8] and so most analyses
were obtained by the “single-shot” method, with just
one sample and one standard loaded per tray [8].

CMs: The oxygen isotopic composition of CM1,
CM1/2 and CM2 chondrites are plotted in Fig. 1.
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Fig.1 Oxygen isotope composition of CM chondrites. Sym-
bols CMs: A81:ALHA81002, CB: Cold Bokkeveld, EET 96
(AK2): EET 96029 (AK2) [11], EET 96029 [11]: E: Essebi,
Ma: Maribo, Mi: Mighei, M: Murchison, Mu: Murray,
N:Nogoya, P-A: Paris-altered, P-L: Paris-less altered, Q93:
QUE 93005, Q97: QUE 97990, Y79: Y791198, W: WIS
91600. C2-ung E:Essebi. CM1/2 MCY: MCY 05231. Filled
green circle is the intercept of the CM2 and CM1-CM1/2
regression lines.

CM2 analyses in Fig. 1 define a linear trend with a
slope of 0.70 [8]. In contrast, CM1 and CM1/2 anal-
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yses define a distinct trend with a slope of 0.48 [4].
MCY 05231 CM1/2, which has a relatively low phyllo-
silicate content [12], plots away from this trend. All the
CM1 and CM1/2 chondrites in Fig.1, with the excep-
tion of Moapa Valley are Antarctic finds. The best fit
line through the CM1 and CM1/2 data, excluding
MCY 05231, intersects the terrestrial fractionation line
(TFL) close to the value of Standard Light Antarctic
Precipitation (SLAP) (Fig. 2). As is also the case for
Antarctic CO3s [9], the bulk oxygen isotope composi-
tion of CM1s and CM1/2s appears to have been shifted
by interaction with Antarctic precipitation. The CM1s
and CM1/2 may be more susceptible to low tempera-
ture terrestrial alteration as a result of their higher con-
tent of fine-grained phyllosilicates and lower crystallin-
ity compared to CM2s [4]. CM1s often have foliated
textures and a few (e.g. LAP031166 and Moapa Val-
ley) have been described as having large fractures that
may also facilitate ingress of terrestrial fluids The pris-
tine isotopic composition of the CM1s and CM1/2
cannot be determined with certainty, but may corre-
spond to the intersection of the two regression lines in
Fig. 1 (green circle) [4].

1

T T T & 1 1 1 T
SLAP 5"°0 -55.5 % Smeciite

0 L. o Terrestrial alteration w1 TFL
e products Y

4k

£ ite (p-
p Akaganeite (}-FeOOH)
v< 2
-3
—&— CM2
e CM1-CM1/2
4 |

-60 -50 -40 -30 -20 -10 0.0 10
5"°0%0

Fig. 2 Oxygen isotope composition of CM chondrites shown
in relation to Antarctic precipitation (SLAP) and weathering
products in isotopic equilibrium with it at 0°C [9].

Primitive CMs: CMs and COs show a range of
textural and geochemical similarities and a close genet-
ic relationship between the two groups is generally
accepted [14]. However, while the chondrule popula-
tion within the two groups are essentially indistinguish-
able [15], differences in terms of mean chondrule size
have been reported [16]. A further difference relates to
the amount of water that would have been accreted to
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the parent bodies of the two groups [15], with COs
being essentially dry and CMs having experienced sig-
nificant aqueous alteration [17]. A further important
difference is the compositional gap between the two
groups on oxygen three isotope plots [8] (Fig. 3).
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Fig. 3 Oxygen isotope composition of COs and CM2s. The
gap between the two groups is occupied by a number of un-
grouped C2 chondrites that may constitute a “primitive”
CM group. CO data [9], LEW 85311 [18], other C2-
ungrouped data from literature, see text for references.
Interestingly, the CO-CM oxygen isotope “gap” is ef-
fectively filled by a significant number of meteorites,
generally classified as C2-ungrouped, which show tran-
sitional features between the two groups. LEW 85311,
EET 87522 and Y-82054 are currently classified as
CM2s, but were identified as ungrouped by [17] on the
basis of their *%0-rich oxygen isotope compositions.
LEW 85311 appears to be a CM-like meteorite with an
anomalously low level of aqueous alteration [18, 19].
NWA 5958 is another ungrouped chondrite with CM-
like characteristics [20] and may be related to LEW
85311. The ungrouped C2s Acfer 094 and GRO 95566
were also identified by [19] as having CM affinities,
although both are normally considered as unique spec-
imens. MAC 87300 and MAC 88107 are not consid-
ered to be paired, but both show affinities to the CO3
chondrites, while displaying evidence of variable de-
grees of aqueous alteration [21]. Based on the Met.
Bull. Descriptions, NWA 7821 and NWA 11556,
which have closely similar oxygen compositions (Fig.
3), appear to have some CM-like characteristics. Ade-
laide is a C2-ungrouped meteorite with affinities to the
CO3s and in particular ALH 77307 [22]. Despite its
extremely 1%O-rich oxygen isotope composition (Fig. 3)
El Medano 100, based on its Met. Bull. Description,
appears to have a CM-like mineralogy.

How many CM-related parent bodies? Hydrated
CC meteorites are dominated by the well-populated
CM group. While displaying some CM-like character-
istics, it has been suggested that NWA 5958 may be
from a distinct parent body to the CM2s [20]. We
would tentatively suggest that other %O-rich, CM-like

chondrites that plot in the CO-CM “gap” might be re-
lated to NWA 5958. Possible candidates for such a
“primitive” CM group, include: EET 87522, GRO
95566, LEW 85311, MAC 87300, MAC 88107, NWA
7821, NWA 11556 and Y-82054. Alternatively, as a
number of these samples plot close to the CM2 mixing
line in Fig. 3 the CM parent body may be even more
isotopically heterogeneous than has previously been
considered.

While ElI Medano 100 appears to show CM-like
characteristics its oxygen isotope composition suggests
that it is derived from a distinct source to the other C2-
ungrouped meteorites. CM1 and CM1/2 chondrites
may be derived from the same parent body as the
CM2s, but this remains an open question [4].

Conclusions: The gap in oxygen isotope composi-
tions between COs and CMs is occupied by C2-
ungrouped meteorites which show affinities to both
groups. One possibility is that the CM parent body is
more isotopically heterogeneous than previously
thought. Alternatively, CM-related material is present
on multiple bodies and formed from similar starting
materials and then experienced variable degrees of
hydrothermal processing. As in the case of the relation-
ship between CM1, CM1/2 and CM2 chondrites, ter-
restrially recovered samples may be compromised and
difficult to interpret. The pristine samples returned
from the asteroids Bennu and Ryugu by the OSIRIS-
REx and Hayabusa2 missions will provide a unique
opportunity to study the diversity of materials present
on primitive aqueously altered bodies.
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