## Asteroid Prospection Explorer (APEX) CubeSat for Hera mission

## Tomas Kohout<sup>(1)</sup>, Jan-Erik Wahlund<sup>(2)</sup> and APEX team

<sup>(1)</sup>University of Helsinki, Finland and The Czech Academy of Sciences, tomas.kohout@helsinki.fi <sup>(2)</sup>Swedish Institute of Space Physics (IRF)

Asteroid Prospection Explorer (APEX) is a 6U CubeSat for Hera spacecraft (ESA) with a unique set of instruments designed to provide a global characterization (Fig. 1) of the Didymos system – target of the joint ESA-NASA Asteroid Impact and Deflection Assessment (AIDA) mission. The instrument set includes ASPECT (Asteroid Spectral Imager), ACA (Asteroid Composition Analyzer), and MAG (Magnetometer).

Both ASPECT and ACA provide crucial information of the Didymos surface composition. While ASPECT can provide the mineral composition information at high resolution (2 m/px or better) from mineral absorption bands, ACA complements this by the elemental composition of sputtered ions from asteroid surface ejected by solar wind. Combining the information from these two instruments we can obtain a complex picture of the Didymos system composition and detect the compositional variations between Didymos I and II as well as along the bodies itself. MAG complements this information by searching for an intrinsic magnetization of the building blocks of the asteroids, thus being potentially able to distinguish between monolithic and various levels of rubble pile structure.

APEX scientific observations are planned in two stages. First, a global mapping phase is scheduled on 4.2 km, slightly inclined orbit around barycenter of the Didymos system. From this orbit, global composition and magnetic field mapping will be achieved at uniform resolution utilizing all three payload instruments. In the second phase, APEX will gradually transfer to locations nearby L4 and L5 points of the Didymos binary system. From here, APEX will engage in a high resolution compositional and magnetic mapping of both Didymos I and II. At the end of the mission, a landing of APEX on one of the Didymos asteroids will be tried.

APEX concept with its unique instrument set and capabilities can be applied in any future asteroid characterization projects from purely science and planetary defense driven missions to characterization of the asteroid ISRU potential.

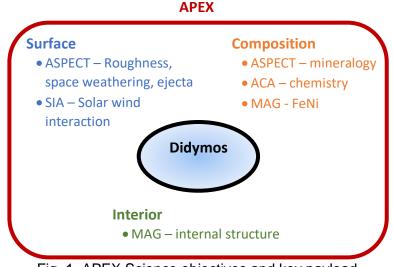



Fig. 1. APEX Science objectives and key payload.

AS1

Result

Result

Result

Result

Result

Result

AS2

| APEX scientific objectives and results                                                                           | Payload Element  |
|------------------------------------------------------------------------------------------------------------------|------------------|
| Map the global composition of the Didymos asteroids                                                              |                  |
| Mineral composition and homogeneity of the Didymos asteroid surface                                              | ASPECT           |
| Elemental composition of the Didymos asteroid surface                                                            | SIA              |
| Constrain FeNi amount from induced component of the magnetic field                                               | MAG              |
| Determine the internal structure and evolution of the Didymos system                                             |                  |
| Mineral and elemental composition differences between Didymos I and II                                           | ASPECT, SIA      |
| Detection and origin of the magnetization of the Didymos asteroid material                                       | MAG              |
| Size of building blocks of the Didymos asteroids inferred from their remanent magnetic signature                 | MAG              |
| Determine surface roughness or regolith grain size of the Didymos asteroids                                      |                  |
| Surface particle size distribution and composition for Didymos I and II                                          | ASPECT           |
| Evaluate space weathering effects on Didymos II by comparing mature and freshly exposed material                 |                  |
| Optical and possible elemental differences between mature and freshly exposed material                           | ASPECT, SIA      |
| Identify local shock effects on Didymos II caused by DART impact based on spectral properties of crater interior | ASPECT, SIA, MAG |
| Determine optical properties of the material within crater                                                       | ASPECT           |
| Determine elemental composition on surface, differences inside and outside the crater                            | SIA              |
| Determine magnetic signature of the crater                                                                       | MAG              |
| Map global fallback ejecta on Didymos I and II                                                                   |                  |
| Detailed global mapping of fallback ejecta on both Didymain and Didymoon                                         | ASPECT, SIA      |

| AS3    | Determine surface roughness or regolith grain size of the Didymos asteroids                                              |                  |
|--------|--------------------------------------------------------------------------------------------------------------------------|------------------|
| Result | Surface particle size distribution and composition for Didymos I and II                                                  | ASPECT           |
| AS4    | Evaluate space weathering effects on Didymos II by comparing mature and freshly exposed material                         |                  |
| Result | Optical and possible elemental differences between mature and freshly exposed material                                   | ASPECT, SIA      |
| AS5    | Identify local shock effects on Didymos II caused by DART impact based on spectral properties of crater interior         | ASPECT, SIA, MAG |
| Result | Determine optical properties of the material within crater                                                               | ASPECT           |
| Result | Determine elemental composition on surface, differences inside and outside the crater                                    | SIA              |
| Result | Determine magnetic signature of the crater                                                                               | MAG              |
| AS6    | Map global fallback ejecta on Didymos I and II                                                                           |                  |
| Result | Detailed global mapping of fallback ejecta on both Didymain and Didymoon                                                 | ASPECT, SIA      |
| AS7    | Characterize interaction of Didymos system with interplanetary environment                                               |                  |
| Result | Magnitude of interaction of the Didymos system with interplanetary magnetic fields, detection of temporary megnetoshpere | MAG              |
| Result | Determine the magnitude of solar wind ion<br>disturbances/interaction with the binary asteroid<br>(Didymos system)       | SIA              |
| AS8    | Determine mass of Didymos I and II from APEX orbit perturbations                                                         |                  |
| Result | Mass of Didymos I and II                                                                                                 | APEX, Hera       |
| AS9    | Determine strength of the near-surface material from APEX landing                                                        |                  |
| Result | Surface material strength                                                                                                | APEX, Hera       |