ELEMENTAL COMPOSITION AND MICROSTRUCTURE OF A SUPERNOVA POLYCRYSTALLINE OLIVINE AGGREGATE IN THE CO CHONDRITE DOMINION RANGE 08006. L. B. Seifert, P. Haenecour, T. J. Zega, Lunar and Planetary Laboratory, University of Arizona, 1629 E University Blvd. Tucson, AZ, 85721-0092, lseifert@lpl.arizona.edu. 2Materials Science and Engineering, University of Arizona.

Introduction: Supernovae (SNe) occur when a massive star falls out of hydrostatic equilibrium and its stellar core contracts, rebounds, and sends a shock wave propagating through the circumstellar envelope. The propagation of the shock wave triggers rapid nucleosynthesis and results in a radial explosion away from the star. Solids condense in this ejected material, and some of these circumstellar grains are transported through the interstellar medium (ISM). A fraction of such grains are preserved in primitive materials such as meteorites.

Information on the structure and chemistry of grains derived from SNe is still severely limited. To date, while >100 grains were identified based on their isotopic composition, only 10 of those were analyzed for detailed structure [1-6]. Nonetheless, these studies reveal diverse structures and morphologies, including single crystals, aggregates and amorphous phases, highlighting the varied chemical and physical conditions in the ejecta of SNe. Messenger et al. [1] identified an aggregate of crystalline forsterite grains, with compositions consistent with the mixing of multiple supernova (SN) layers. Zega et al. [3] identified a single crystal of hibonite with a crack extending through the grain, which could be an indication of a collision event. Other studies identified six amorphous grains: one with a composition consistent with stoichiometric enstatite, and five with non-stoichiometric silicate compositions including forsterite, diopside, Fe-rich silicates resembling glass with embedded metal and sulfide (GEMS) and a Ca-rich pyroxene [4-5]. Here we report on a SN silicate grain identified in the Dominion Range (DOM) 08006 CO3.0 chondrite.

Methods: Local isotopic enrichments (‘hotspots’) were identified via NanoSIMS raster-ion-imaging of C and O isotopes in a thin section of DOM 08006 and elemental compositions were provided by Auger spectroscopy [7]. We chose one anomalous hotspot, DOM-35, thought to originate in SN ejecta for detailed chemical and structural analysis using transmission electron microscopy (TEM).

A cross-section of DOM-35 was prepared using established focused-ion beam scanning-electron microscopy (FIB-SEM) techniques [8] with the FEI Helios G3 FIB located at the Lunar and Planetary Laboratory (LPL). The section was then analyzed with LPL’s 200 keV aberration-corrected Hitachi HF5000 S/TEM. The HF5000 is equipped with secondary electron (SE) detectors, scanning TEM (STEM)-based bright-field (BF) and dark-field (DF) imaging detectors, as well as an Oxford Instruments X-Max® 100 TLE EDS system with dual 100 mm² windowless silicon-drift detectors.

Results: NanoSIMS analysis of a local area of DOM 08006 reveals enrichment in both 18O and 17O relative to solar system values, with 18O/16O = 4.0E-4 ± 2.0E-5 and 18O/16O = 3.34E-3 ± 7.0E-6 [8], placing it in the group-4 field of presolar grains as defined by [9]. The O-anomaly has an oblate shape (Fig. 1), measuring roughly 235 × 235 nm, as confirmed by TEM data.

Figure 1: (A) SE image of hotspot (red circle) within DOM 08006 matrix. (B) NanoSIMS δ18O image with arrow indicating the oblate hotspot and enrichment in 18O.

TEM-EDS mapping of the overall FIB section reveals a matrix containing Si, O, Mg, Ca, Fe and large grains containing Fe and S. DOM-35 contains O, Mg, and Si, with localized enrichment in Fe and Ca (Fig. 2). Fe is enriched in the lower half and left and right sides of the anomaly.

Selected-area electron-diffraction (SAED) patterns were acquired across the hotspot. The anomalous region DOM-35 is an olivine aggregate. The left part of this region is a single crystal of stoichiometric forsterite (Fo55). The right part of the anomaly is a polycrystalline assemblage as revealed by SAED patterns. Measurement of the patterns, together with EDS spectroscopy indicates an Fe-rich olivine (Fo65).

Discussion: Confining the thermodynamic conditions under which SNe grains condense is challenging because SNe are highly energetic environments and the pressure and temperature conditions within them are poorly constrained. However, a few studies are available in the literature. For example, Fedkin et al. [10] used model compositions of thin layers of ejecta within the main burning zones of type-II SNe, computed by [11], to construct the chemical compositions of minerals condensed by equilibrium processes in 15-.
21- and 25-M$_{\odot}$ SNe. The resulting minerals, compositions, sequences of condensation and temperatures of condensation are similar for all three masses [10]. Olivine is a predicted condensate in the H, He/N, O/C, O/Ne and O/Si SN layers [10]. The compositions of the H and He/N layers are reducing because they are close to solar composition, therefore, forsterite is the favorable condensate, and X_{Fe} cannot exceed 0.002 above 1000 K. In the deeper, more O-rich zones forsterite is favorable between 1500 and 1600 K, and the fayalite content is between 0<X_{Fe}<0.03 due to the low atomic Fe/Mg ratio. Below these zones, temperatures are too low for the formation of silicates, despite abundant Fe0 metal due to a low oxygen fugacity. In order to produce a more fayalitic composition, mixing between SN layers is required. Alternatively, Nozawa et al. [12] demonstrated that forsterite is a predicted condensate in both unmixed and mixed SN ejecta through non-steady-state nucleation and grain growth.

We can place constraints on the progenitor SNe of DOM-35 via comparison of the grain data to these models. In comparison to [10], the 16O/18O ratio of DOM-35 is most consistent with a 15 M$_{\odot}$ SN, and the stoichiometric (Fo$_{50}$) single-crystal forsterite is consistent with equilibrium condensation in a 15 to 25M$_{\odot}$ SN between 1063-1575 K. We note that Nozawa et al. [12] developed a model in which forsterite could condense in unmixed SN ejecta through non-steady-state nucleation and grain growth. However, mixing between SN layers is required to produce the Fe-rich composition of the polycrystalline region of DOM-35 (Fo$_{50}$). Moreover, astronomical observations of SNe remnants show that the ejecta are heterogeneous, clumpy, and large scale mixing is occurring, e.g. [13]. Thus, while we cannot completely rule out forsterite condensation in an unmixed zone of the progenitor star to DOM-35, it seems unlikely that both a single-crystal forsterite grain and Fe-rich polycrystalline olivine aggregate could otherwise accrete together without significant transport occurring within or between zones and hence mixing.

We note that only two other stoichiometric SN silicates, B10A [1] and 2_4 [5], were previously identified in meteoritic samples. The data from both of these grains are consistent with equilibrium condensation, the former at 1560 K in a solar-metallicity star with a mass 15 M$_{\odot}$, but mixing was required to produce its Fo$_{50}$ composition [1]. The single-crystal forsterite in DOM-35 is similar in crystal structure and chemical composition to SN grain B10A [1], but its isotopic composition is significantly different. Thus, while it is conceivable that the single-crystal forsterite in DOM-35 formed under similar thermodynamic conditions as B10A, the data imply different nucleosynthetic origins.

References:

Acknowledgements: We gratefully acknowledge the late Professor Christine Floss for her contributions to the identification of DOM-35 through NASA grants NNX14AG25G and NNX12AN77H. We also acknowledge NASA grants NNX12AL47G, NNX15AJ22G and NSF grant 1531243 for funding instrumentation in the Kuiper Materials Imaging and Characterization Facility at LPL. Research supported by NASA grant NNX15AJ22G.

Figure 2: EDS maps of DOM-35 with HAADF image showing anomalous region with red circle for comparison.