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Introduction: The Infrared and Raman for Inter-

planetary Spectroscopy (IRIS) laboratory at the Insti-
tute für Planetologie in Münster produces, among oth-
ers, spectra for a database for the mid-infrared spec-
trometer MERTIS (Mercury Radiometer and Thermal 
Infrared Spectrometer) onboard of the ESA/JAXA 
BepiColombo mission to Mercury. MERTIS will map 
spectral features of the surface in the 7-14 µm range, 
with an average spatial resolution of ~500 m [1,2]. 
Thus, the mineralogical composition of the planetary 
surface can be determined via remote sensing.  Mercu-
ry has been exposed to heavy impact cratering [3,4]. 
Therefore, impact products like glass are an important 
component of its surface. Impact products like glass 
make up possibly up to 45% of the surface regolith of 
Mercury [5]. Hence, we are studying a series of 
shocked, i.e., basaltic material in the mid-infrared, in 
order to interpret future MERTIS measurements [6-8]. 
Here we present results of a study [9] in which thermal 
effects of shock metamorphism due to high velocity 
impacts on basalt were simulated using laser irradiation 
(Fig.1). 

Samples and Techniques: Hoffelder basalt (Hof-
feld, Germany) was used as starting material, a basa-
nitic, porphyritic rock consisting of 200–800 µm size 
olivine phenocrysts set in an aphanitic groundmass 
(≤100 µm grain size) of mainly labradorite, Fe,Ti ox-
ides (ulvöspinel ± rare ilmenite), and feldspathoids [9].  

In this work, the impact melting of basaltic materi-
als was simulated by using a pulsed Nd:YAG laser at 
Technische Universität Berlin and a continuous-wave 
(CW) infrared fiber laser at Fraunhofer Ernst-Mach-
Institut, Freiburg [9] (Fig.1). Basalt samples were irra-
diated along 15 mm long and 1 mm wide lines. To op-
timize the melt production the laser settings were: 0.9 
kW for emitted power over 15 s at a wavelength of 
1064 nm, a pulse frequency of 25 Hz, and a pulse dura-
tion of 2.5 ms for the pulsed setup, and 8 kW, 1064 
nm, and 6 s total irradiation time for the CW setting. 
Afterwards, the sample runs were collected, embedded 
in resin, sectioned and polished, and analyzed using a 
JEOL JXA-8530F Hyperprobe electron probe microa-
nalyser (EPMA). For IR analyses, we used a Perkin-
Elmer Spotlight400 FTIR spectrometer at the Universi-
ty of Manchester. Spot analyses (25×25 µm) were 
made in the wavelength range from 2.5–15.4 µm in the 
reflectance mode, using a cooled mercury-cadmium 

telluride (MCT) detector. For mapping, an adjoining 
micro spectroscopy mapping unit was used [10] 
(Fig.2).  

Results: The chemistry of the glass from the pits or 
craters on the basalt block and a melt glass droplet is 
increasingly fractionated depending on the volatility of 
the components (Fig.3) [11,12]. 

The micro-FTIR spectrum of the bulk melt from the 
pit (Fig.2,4) has a dominating RB at 10.3 µm and a CF 
at 8.4 µm. An outlier spot (C5; Fig.2) has the CF at 8.5 
µm and the RB at 10.5 µm. The powdered bulk glass 
fraction of the melt glass droplet (Fig.4; cf. Fig.1) has a 
CF at 8.9 µm and a strong RB at 10.3-10.5 µm. The 
general shape is similar to those of basaltic impact melt 
glasses [13-15] 

Summary and Conclusions: The melt droplet re-
sulting from the CW experiment has been contaminat-
ed by Ca due to the experimental set-up, which ex-
plains the difference in chemistry and shift of spectral 
features compared to the glass in the pits. The chemis-
try of the uncontaminated glass (Fig.3) in the pits re-
sulting from the pulsed reference experiments shows 
high contents in refractory elements (Al, Ca and Ti) 
indicating a possible fractionation owing to evapora-
tion of lighter elements [11,12]. The resulting spectra 
of the melt glasses could thus be useful as indicators of 
evaporation processes e.g. in impact events. Alterna-
tively, the variations could be explained by incomplete 
mixing or melting of starting material.  
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Fig.1: Images of the CW laser melting experiment [9]. 
The Basalt slab is on top, with a separate melt glass 
droplet on the bottom, which was used for the powder 
analyses. In-situ FTIR analyses were made from laser 
pits on the basalt slab. 

 
Fig.2: Micro-FTIR analyses of a pit on the slab. The 
colored part was mapped using the FTIR mapping unit 
in a resolution of 25 × 25 µm. Phases were identified 
using a multivariate statistical procedure. Resulting 
spectra of this and other mapped areas are compared in 
Fig.4 with bulk powder measurements of the melt. C5 
is a 25 × 25 µm sized spot analyzed separately in point 
analysis. 

 
Fig.3: Comparison of the compositions (EMPA da-

ta) of the droplet (red) and the crater melt average 
(dark blue), the two outliers B5 and C6 (light blued 
dotted lines) normalized on the bulk unprocessed basalt 
[6](black). The oxide components are arranged follow-
ing their expected volatility, ranging from high (K2O, 
Na2O), moderate (FeO, SiO2, MgO) to low (CaO, 
TiO2, Al2O3) [12]. 
 

 
Fig.4: Micro--FTIR spectra from the melted parts 

of the basalt slab.  
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