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Introduction: The Infrared and Raman for Inter-
planetary Spectroscopy (IRIS) laboratory at the Insti-
tute fir Planetologie in Miinster produces, among oth-
ers, spectra for a database for the mid-infrared spec-
trometer MERTIS (Mercury Radiometer and Thermal
Infrared Spectrometer) onboard of the ESA/JAXA
BepiColombo mission to Mercury. MERTIS will map
spectral features of the surface in the 7-14 pum range,
with an average spatial resolution of ~500 m [1,2].
Thus, the mineralogical composition of the planetary
surface can be determined via remote sensing. Mercu-
ry has been exposed to heavy impact cratering [3,4].
Therefore, impact products like glass are an important
component of its surface. Impact products like glass
make up possibly up to 45% of the surface regolith of
Mercury [5]. Hence, we are studying a series of
shocked, i.e., basaltic material in the mid-infrared, in
order to interpret future MERTIS measurements [6-8].
Here we present results of a study [9] in which thermal
effects of shock metamorphism due to high velocity
impacts on basalt were simulated using laser irradiation
(Fig.1).

Samples and Techniques: Hoffelder basalt (Hof-
feld, Germany) was used as starting material, a basa-
nitic, porphyritic rock consisting of 200-800 um size
olivine phenocrysts set in an aphanitic groundmass
(<100 pm grain size) of mainly labradorite, Fe,Ti ox-
ides (ulvospinel * rare ilmenite), and feldspathoids [9].

In this work, the impact melting of basaltic materi-
als was simulated by using a pulsed Nd:YAG laser at
Technische Universitat Berlin and a continuous-wave
(CW) infrared fiber laser at Fraunhofer Ernst-Mach-
Institut, Freiburg [9] (Fig.1). Basalt samples were irra-
diated along 15 mm long and 1 mm wide lines. To op-
timize the melt production the laser settings were: 0.9
kW for emitted power over 15 s at a wavelength of
1064 nm, a pulse frequency of 25 Hz, and a pulse dura-
tion of 2.5 ms for the pulsed setup, and 8 kW, 1064
nm, and 6 s total irradiation time for the CW setting.
Afterwards, the sample runs were collected, embedded
in resin, sectioned and polished, and analyzed using a
JEOL JXA-8530F Hyperprobe electron probe microa-
nalyser (EPMA). For IR analyses, we used a Perkin-
Elmer Spotlight400 FTIR spectrometer at the Universi-
ty of Manchester. Spot analyses (25x25 pm) were
made in the wavelength range from 2.5-15.4 pm in the
reflectance mode, using a cooled mercury-cadmium

telluride (MCT) detector. For mapping, an adjoining
micro spectroscopy mapping unit was used [10]
(Fig.2).

Results: The chemistry of the glass from the pits or
craters on the basalt block and a melt glass droplet is
increasingly fractionated depending on the volatility of
the components (Fig.3) [11,12].

The micro-FTIR spectrum of the bulk melt from the
pit (Fig.2,4) has a dominating RB at 10.3 um and a CF
at 8.4 um. An outlier spot (C5; Fig.2) has the CF at 8.5
pm and the RB at 10.5 pm. The powdered bulk glass
fraction of the melt glass droplet (Fig.4; cf. Fig.1) has a
CF at 8.9 um and a strong RB at 10.3-10.5 pm. The
general shape is similar to those of basaltic impact melt
glasses [13-15]

Summary and Conclusions: The melt droplet re-
sulting from the CW experiment has been contaminat-
ed by Ca due to the experimental set-up, which ex-
plains the difference in chemistry and shift of spectral
features compared to the glass in the pits. The chemis-
try of the uncontaminated glass (Fig.3) in the pits re-
sulting from the pulsed reference experiments shows
high contents in refractory elements (Al, Ca and Ti)
indicating a possible fractionation owing to evapora-
tion of lighter elements [11,12]. The resulting spectra
of the melt glasses could thus be useful as indicators of
evaporation processes e.g. in impact events. Alterna-
tively, the variations could be explained by incomplete
mixing or melting of starting material.
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Fig.1: Images of the CW laser melting experiment [9].
The Basalt slab is on top, with a separate melt glass
droplet on the bottom, which was used for the powder
analyses. In-situ FTIR analyses were made from laser
pits on the basalt slab.
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Fig.2: Micro-FTIR analyses of a pit on the slab. The
colored part was mapped using the FTIR mapping unit
in a resolution of 25 x 25 pum. Phases were identified
using a multivariate statistical procedure. Resulting
spectra of this and other mapped areas are compared in
Fig.4 with bulk powder measurements of the melt. C5
is a 25 x 25 um sized spot analyzed separately in point
analysis.
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Fig.3: Comparison of the compositions (EMPA da-
ta) of the droplet (red) and the crater melt average
(dark blue), the two outliers B5 and C6 (light blued
dotted lines) normalized on the bulk unprocessed basalt
[6](black). The oxide components are arranged follow-
ing their expected volatility, ranging from high (K30,
Na,O), moderate (FeO, SiO;, MgO) to low (CaO,
TiO2, AlL0Os) [12].
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Fig.4: Micro--FTIR spectra from the melted parts
of the basalt slab.
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