MICROSTRUCTURAL CHARACTERIZATION OF TiO$_2$–II IN THE CHICXULUB PEAK RING.
Martin Schmieder1,2, Timmons M. Erickson3, David A. Kring1,2 and the IODP–ICDP Expedition 364 Science Party,
1Lunar and Planetary Institute – USRA, Houston, TX 77058 USA (schmieder@lpi.usra.edu), 2NASA–SSERVI, 3Jacobs–JETS, NASA–JSC, Houston, TX 77058 USA.

Introduction: The peak ring of the ~180 km-diameter Chicxulub impact crater on the Yucatán Peninsula, Mexico, was recently drilled during IODP–ICDP Expedition 364, producing core M0077A [1]. The new core provides insights into the anatomy, composition, tectonic deformation, shock metamorphism, and post-impact overprint of crater-filling impactites and crystalline basement rocks [2]. The basement rocks were shocked to ~12.5–17.5 GPa [3], uplifted, and hydrothermally altered [4]. This study presents a combined Raman spectroscopic and electron backscatter diffraction (EBSD) study of TiO$_2$–II, a high-pressure polymorph of TiO$_2$ with an α-PbO$_2$ structure (orthorhombic; space group $Pbnm$; density 4.34 g/cm3 [5,6]), in shocked granitoid rock of the Chicxulub peak ring.

Sample and Analytical Methods: We selected shocked granitoid sample 174-2 (core depth 949 m below seafloor [1,2,7]) from the Chicxulub peak ring for high-resolution analyses. The granitoid rock contains mm-sized aggregates of TiO$_2$ crystals replacing altered euhedral titanite. The sample was analyzed using a Leica DMLP optical microscope; a 7600F JEOL field emission gun scanning electron microscope (FEG-SEM); a CAMECA SX 100 electron microscope; a Jobin–Yvon Horiba LabRAM HR 800 μ-Raman spectrometer (514 nm Ar laser; ~1 μm spot diameter); and an Oxford Instruments Symmetry EBSD detector on the JEOL FEG-SEM (20 kV, 16 nA, 100 nm step size for phase and orientation mapping).

Results: Individual TiO$_2$ crystals in sample 174-2 are up to ~70 μm in length and appear brown-translucent under the optical microscope. The TiO$_2$ grains commonly occur as euhedral to subhedral crystals. Micro-Raman analysis of TiO$_2$ crystals produced spectra with distinct bands at ca. 149, 173, 287, 315, 340, 356, and 532 wavenumbers (cm$^{-1}$) [7], in close agreement with Raman spectra for the high-pressure polymorph TiO$_2$–II [5,8] (Fig. 1). Some spectra reveal additional bands at 442 and 610 cm$^{-1}$, indicating the presence of rutile. No Raman peaks typical of anatase or brookite were obtained in sample 174-2. Backscattered-electron (BSE) imaging reveals lamellar and locally granular microtextures, as well as subparallel and intersecting sets of fractures within individual TiO$_2$ crystals (Fig. 2).

![Fig. 1: Raman spectra for TiO$_2$–II in granitoid rock of the Chicxulub peak ring (sample 174-2), TiO$_2$–II from the Bosumtwi impact crater, Ghana [8], and reference spectra for rutile (RRUFF database [20]). Reference spectra for anatase and brookite are not shown. The position of laser spots in the Chicxulub sample is indicated in Fig. 2.](image)

High-resolution EBSD mapping of individual TiO$_2$ crystals (Fig. 2), calibrated for rutile, anatase, brookite, and TiO$_2$–II (i.e., orthorhombic TiO$_2$ of Laue group mmm [9]), show a complex arrangement of locally cross-cutting lamellar and granular subdomains within each crystal investigated. EBSD phase maps reveal that the grains are composed of different TiO$_2$ polymorphs: (1) TiO$_2$–II, which forms larger, coherent, and commonly elongated lamellar domains that make up ~30 to 90% of the crystals; (2) rutile, in the form of microcrystalline granules and lamellae that locally occur between coarser-crystalline TiO$_2$–II; and (3) minor anatase not detected in Raman spectra, found along the margins of the TiO$_2$ crystals and within the surrounding matrix. The TiO$_2$–II correlates with slightly brighter domains in high-contrast BSE images (Fig. 2). Internal cross-cutting relationships suggest the microcrystalline-granular rutile overprints shock-produced TiO$_2$–II. EBSD orientation maps and pole figures show that individual TiO$_2$–II lamellae are related to one another by rational twin orientations, which likely formed by transformation twinning. Interphase misorientations between shock-produced TiO$_2$–II and microcrystalline rutile granules are systematically aligned, indicating that the solid-state reversion to rutile is crystallographically controlled.

TiO$_2$ crystals contain ≤2.5 wt% Fe$_2$O$_3$, ≤1.5 wt% Nb$_2$O$_5$, ≤0.4 wt% SiO$_2$, and ≤0.3 wt% Ta$_2$O$_5$.
following sequence of geologic events: (1) Around 340 Ma, granitoid plutons crystallized in the Maya Block [14], as indicated by U–Pb ages for magmatic titanite [7]. (2) Between ~340 Ma and 66 Ma, titanite in the granitoid rock was altered to rutile and/or anatase (+calcite, +quartz), likely during a pre-impact regional magmatic and/or hydrothermal event, and presumably under high CO₂ activity [15]. (3) During the 66 Ma Chicxulub impact, rutile and/or anatase partially to fully transformed to the high-pressure polymorph TiO₂-II at shock pressures ~12.5–17.5 GPa [3] (consistent with experimental transformation pressure constraints of ~13–20 GPa [16,17]). The shock-induced transformation to TiO₂-II may have been facilitated by pre-impact heating of the peak-ring lithologies at ~8–10 km depth [1] to ~200–250 °C (at a typical geothermal gradient of ~25 °C/km); shock metamorphic overprint of the granitoid rock contributed some additional ~100–150 °C [18]. Finally, (4) the newly formed Chicxulub crater, including shocked and uplifted rocks in its peak ring, hosted a long-lived post-impact hydrothermal system [4,19]. As the peak ring cooled, TiO₂-II incompletely back-transformed to neoblastic granules of rutile (Fig. 2).

TiO₂-II is stable below 340 °C, but rapidly (within minutes to weeks) reverts to rutile at >440–500 °C [13,16]. The formation and preservation of TiO₂-II in the Chicxulub peak ring, thus, place new petrologic constraints on shock conditions and post-impact temperatures inside the peak ring during crater cooling. Chicxulub’s peak-ring lithologies must have cooled below 340°C relatively quickly (or did not significantly exceed those temperatures in the first place), so as to preserve much of the shock-produced TiO₂-II. Furthermore, these results suggest that TiO₂-II may be a common shock indicator at terrestrial impact structures, including those that experienced vigorous and long-lived post-impact hydrothermal alteration.

References:

Discussion and Conclusions: The discovery of TiO₂-II in rocks from the Chicxulub crater is the latest addition to a short list of terrestrial impact structures and distal ejecta layers where this shock-produced high-pressure polymorph is found [5,8,10–13]. Notably, peak-ring sample 174-2 hosts an outstanding natural occurrence of TiO₂-II, both in terms of crystal abundance and the size of individual crystals. The TiO₂-II in this and other Expedition 364 core samples [1,2,7] is the product of a long and complex pre-, syn-, and post-impact history recorded in Chicxulub’s peak-ring lithologies. Based on our petrologic and microscopic observations of TiO₂ grains, we propose the