Effect of Induced Seismicity of Indirect Meteorite Impacts on the Stability of Lunar Lava Tubes

A. Modiriasari¹, A. Boener², A. K. Theinat¹, A. Bobet¹, H. J. Melosh², S. J. Dyke¹,³, J. Ramirez¹, A. Maghareh¹, D. Gomez¹

¹Lyles School of Civil Engineering, Purdue University, ²Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, ³School of Mechanical Engineering, Purdue University. *amodiria@purdue.edu

Abstract #2862

Lunar lava tubes can provide immediate protection against surface hazards

Hazards for Lunar Habitation

Evidence of Lava Tubes

• Lunar Reconnaissance Orbiter (LRO) and SELEnological and EngiNeering Explorer (SELENE) images of skylights near the volcanic areas and sinuous rills (Robinson et al., 2017)

• Gravity Recovery And Interior Laboratory (GRAIL) mass deficit region (hot colors) near the skylight (Chappaz et al., 2017)

• Lunar Radar Sounder (LRS) echo pattern (hot colors) near the skylight (Kaku et al., 2017)

• SELENE-Kaguya/LRO-LOLA morphometric analysis of collapses (skylights and pit chains) (Sauro et al., 2018)

Structural Stability of Lava Tubes

• Static analysis:
 Effect of size, roof thickness, and material strength

 • Model set-up in ABAQUS
 • Convergence criterion, difference in radial displacements of crown and invert

• Dynamic analysis:
 Effect of impact-induced seismic events

 • Predictions of lunar meteorites (main source of seismicity)

 • Modeling induced seismicity using iSALE (Melosh et al., 1992)

 • Motion history from iSALE at 15.75 m distance from meteorite impact

 • x-velocity (m/s)
 • y-velocity (m/s)
 • x-acceleration (g)
 • y-acceleration (g)

Structural Stability of Lava Tubes

Future Direction

Analyzing the structural stability of lunar lava tubes under the effect of impact-induced seismic events:

• Using finite element method software ABAQUS

• Lava tube dimension (width: 1000 m, height: 333 m, roof thickness: 100 m)

• Basalt material properties and GSI 70

• Importing velocity history from iSALE as the boundary condition in the left lateral boundary of the ABAQUS model

Acknowledgments

This work is funded by the Purdue Office of the Provost, College of Engineering, Department of Earth, Atmospheric, and Planetary Sciences, Schools of Civil and Mechanical Engineering. This project also received seed funding from the Dubai Future Foundation through the Guanna.com open research platform. The authors deeply appreciate these supports.

www.purdue.edu/reth/