Change Detection in Repeat Imagery Using Principle Component Analysis
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PCA, traditionally used in terrestrial remote sensing to distinguish
between different landcovers in a multi-/hyper-spectral image, can also
be used to find interesting changes in a multi-temporal image. PCA
provides the advantage of separating changes into a hierarchical set
based on statistical significance which helps isolate variations in lighting

from more subtle, geologically interesting changes.
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Takeaway:

Application of the Principle Component
Analysis (PCA) data reduction technique to
repeat imagery provides a means of
highlighting changes. PCA transforms a
multi-dimensional dataset to a new
coordinate system in order to better depict
variations between data points. The
orientation of the new coordinate system is
3 B | defined by the longest axes (maximum
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Principle Component Analysis
Captures variations in image stack
as a series of PCs. Features of
interest are identified in PCs,

Why not just subtract

images?:

Although useful, image differencing (Fig.6) or
ratioing cannot isolate the lighting
differences between images as effectively as
using PCA (Fig.5)
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m/pixel is 50 TB with over 110,000 images (Fig.1). Even once Eigen matrix. produce a cloud of points (Fig.3) which can | Fig.5 shows the result of the PC transform (performed in image in the Palikir time-series

images from the same location are collected, the large image size be analyzed with PCA.
(Fig.2) and subtlety of change (e.g. dune migration) may mean that

ongoing geologic processes are not detected.

The preferred, Earth-based method of using An example of a PCA transformation
multi-spectral image classification does not using 2 of the 9 HIRISE images from
apply to the single-band, hi-res data covering Palikir Crater (Fig.4) is shown in Fig.3.
the largest area of Mars. Image (g) has RSL (highlighted in red
‘in Fig.3a). These RSL pixels were

. highlighted by selecting i._" .
pixels associated with "'\,; o
the bulge in the scatter | % %
plot (Fig.3b) of (f) vs. (g) &
pixel values. These pixels | =
were brighter in (f) than
(g) due to RSL activity.
Rotation of the pixel
cloud via PCA plots the
data against axes which
run through the pixel
point cloud and capture

!:he maximurn variance Figure 3: lllustration of PCA using 2 of the 9 images in the
in the data (Fig.3c). Palikir HiRISE time-series.

ENVI®) on the full time-series. Because most of the variation from an average image.
in the data is captured in PCA1, representing an average image,
it uses a color scale associated with Fig.4. PCs 2 and 3 are dominated by differences in lighting
and possibly dust/frost deposition/erosion. RSL features are identifiable in PCA4 and dominate
PCAS with subsequent components capturing smaller variations in lighting, RSL shape (PCA8 &
9), or camera noise.
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It is much easier to identify features of interest in the PCA images than the original time-series
(or in differenced images) — essentially highlighting locations which have experienced change.
This makes finding changes easier over large areas with multiple, overlapping images. Once
locations are identified, it is fairly trivial to find the images responsible for the change.
However, if a location accumulates dozens of images, the PCs can be designated witha 0, 1, or
-1 if the PC doesn’t contain the feature, contains the feature, or contains the feature in the
negative, respectively. This “feature vector” is then multiplied by the variance vector and the
matrix involved in the PCA transformation (see table). Although not 100% reliable, this vector
product gives the probability of the original ' |
image containing the feature. (see Fig.7 inset). ’
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Inset gives the “feature probability” value, p, for
all images in the time-series. The solid line gives p assuming
RSL are blue in PCA8 while the dashed line assumes RSL are
& a | > & red in PCA8. The dashed line gives a better indication of
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temporal changes can be extracted using PCA. We encourage
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