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BN BACKGROUND

The Olympus Maculae are a series of irregular, generally low albedo, and low dust
features spanning ~1,400 km”® within Olympus Mons' aureole terrains. The Olympus
Maculae themselves exhibit elevated thermal inertia, little o no topographic relief,
non-definitive spectra, and minimal surface dust in an otherwise dusty region.
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The relative lack of dust in the maculae showcases the surface expression of the
uppermost stratigraphy of the hosting Medusae Fossae Formation (MFF), thus providing
unique windows into the origins, extent, and evolution of this enigmatic terrain.
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maculae as cross-bedding?, formed when sets of
layered sedimentary deposits are eroded and another
set is deposited, unconformably, on top. The
morphology of cross-bedding can provide evidence
for past sedimentary depositional environments. The
paleoenvironment that formed the crossbedding
observed within the maculae was most likely climbing
barchan dunes® or repeated periods of sediment

deposition and erosion into the troughs of yardangs.
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DUST DEVILS

After the Mars global dust storm of 2018, we

re-imaged several maculae with the orbiting

HIRISE camera to monitor any changes in dust

deposition or removal. We discovered a notable

increase in dust devil fracks as well as a change

in the borders of the maculae post dust storm.
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Mars. Some research has found that
the paleo winds that formed these
immobile features (arrows) likely flowed
perpendicular to their crest® (orange
lines). About 2,000 TARs provide
evidence for circumferential winds
controlled by local topographic rises.

Ripples within the maculae are
visually dark yet anomalously
immobile, contradictory tfo other low
albedo ripples across Marsé’. The wind
that originally formed these features
(arrows) flowed perpendicular to
ripple crests (red lines). While it is still
unknown why these features are
Immobile, we hypothesize that they
may have been indurated by salts? ?.

SUMMARY

We interpret the maculae to be relatively dust-free windows into part of the Medusae Fossae Formation (MFF)
Ignimbrites which appear to have experienced multiple cycles of erosion and deposition, resulting in a diverse,
complex, and ever-changing volcanic-aeolian landscapes? '%1°. The wide array of aeolian landforms and
paleo wind indicators at different scales offers insight into this poorly understood region of Mars:
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