Introduction

The Kaş structure began to crystallize in many ways as a faithful copy of the large Spanish Rubielos de la Cérida impact structure and the extensive geological impact inventory of Rubielos de la Cérida became a helpful guideline in the terrain exploration of the new Kaş structure. What is special about this is that both structures are laid out in a purely sedimentary target, which is also largely formed in carbonate facies. While the products of meteorite impacts into dense, mostly crystalline and mixed targets are relatively well understood and macroscopic and microscopic deformations of these target rocks are the norm, the response of volatile-rich sedimentary rocks, in particular carbonate rocks, to impact, remains debated. Here we report on a selection of amazingly remarkable similarities in both impact structures as instructive illustrative material for impact terrain studies, especially as they are terrain with predominantly excellent field conditions and mostly easily accessible outcrops in pleasant climates.

Kaş Bay impact structure

Ure et al. [1, 2] have for the first time suggested a possible Kaş Bay impact structure based on preliminary geologic field evidence. New field studies and laboratory analyses further strengthen the impact hypothesis. With a diameter of about 10 km and a central uplift (Figs. left and below) Kaş Bay is classified as a complex impact structure. The local bedrock is Cretaceous neritic limestone. Based on stratigraphical evidence, uplift and subsidence rates, an age from the Pleistocene epoch is probable.

Rubielos de la Cérida (Spain) impact structure

As part of the Azuara/Rubielos de la Cérida impact crater chain is an elongated impact basin with a central-uplift chain as part of the Mi–Tertiary Azuara multiple impact event (Fig. below) [4 - 8], which is still debated by some Spanish regional geologists, is given by geological and geophysical evidence like ubiquitous monomineralic and polymineralic breccias, large systems of monomineralic and polymineralic breccia dikes, enormous and extended megabreccias, shatter cones, extended impact ejecta, gravity and geomagnetic anomalies, strong shock metamorphism like shock melt, planar deformation features (PDFs) and diaplectic glass in various minerals [4 - 8].

References:

Conclusion: Very large impact structures in purely sedimentary, in particular predominantly carbonate targets, are rare and have not been much investigated to date. The comparison of two such big structures with an overabundant inventory of impact-typical formations, deformations and petrographic evidence, clearly shows that a considerable neglect of impact research can be observed here. Even in recent publications, e.g. in a review "of impact melt and breccia dikes in terrestrial impact structures" [9], sedimentary targets are mentioned only casually in a single sentence, about lithic breccia dikes, apparently forgetting that such an inventory exists to a much greater extent and variability as exemplified here.